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Abstract

In this work we analyse the behaviour of a quantised scalar field in a de Sitter background and
the backreaction on the geometry. Due to the dynamic nature of the background no unique
vacuum, diagonalising the Hamiltonian at all times, exists on the basis of which we can build
a global Fock space. Imposing de Sitter invariance of our vacuum we find a two parameter
class of vacua known in the literature as Mottola-Allen vacua, which are invariant under the
time-preserving part of the de Sitter symmetry group. Furthermore, fixing one of the men-
tioned parameters results in a one parameter group of vacua, leaving argument-symmetric
Green functions invariant under the full de Sitter group. Lastly, matching our result to the
flat Minkowski solutions on very small scales where curvature is expected to be negligible, we
can fix the last parameter and obtain what is referred to as the Bunch-Davies (BD) vacuum.
We use our obtained insight to compute the expectation value of the regularised energy mo-
mentum tensor for a general choice of de Sitter invariant vacua. We conclude that as long as
we respect de Sitter invariance, we do not get any dynamic backreaction and only obtain a
constant shift in the cosmological constant.
We then look for the breaking of this isometry in the loop corrections of a self interacting λφ4

theory, but find that it is generally also respected in loops, as long we restrict to a certain
coordinate patch of de Sitter spacetime.
Finally, we break de Sitter isometry explicitly by introducing a scalar metric perturbation to
the de Sitter geometry. We introduce a free massive scalar field to our spacetime and esti-
mate the backreaction by solving for the perturbation. Our results show that in the short
wavelength (UV) regime the largest contribution to the metric perturbation decays while os-
cillating in a similar way to gravitational wave modes. In the long wavelength (IR) regime we
find that one part of the solution significantly grows and these perturbations can no longer be
considered small.
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Chapter 1

Introduction

Since the birth of general relativity, the question about what exact type of spacetime geometry
we live in has relentlessly puzzled cosmologists. The uprise of the inflationary paradigm has
put the de Sitter geometry in bright spotlight. It does a very good job at approximating an
exponentially expanding phase of our universe with the additional bonus of being maximally
symmetric. Exact application of this geometry although has been ruled out. One reason is
the constant Hubble parameter, or exact Hubble law, which contradicts observation. Fur-
thermore, we know that different forms of energy or matter contributions exist, which had
their respective periods of domination in the past [1]. We are pretty certain that either some
form of positive energy contribution must have existed already during the stage of inflation or
that the inflaton field, which drives the expansion, decays into the standard model particles
after inflation has ended. So de Sitter spacetime is only a good approximation as long as we
can completely ignore any energy contribution not driving the expansion. Inflation acts as a
classical smoothing mechanism, but can not directly smooth out quantum perturbations.
Furthermore, we know that the quantum nature of matter has lead to valuable results in
terms of structure formation in the early universe by considering quantised perturbations on
top of flat Minkowski spacetime [2]. In the past centuries, much work has been done in the
intersection of gravity and quantum field theory. Up to this day, we have not found a way to
describe gravity above the Planck scale. The usual approach is to investigate the quantised
fields on a classical background other than flat Minkowski spacetime. This approach of cou-
pling quantum fields to classical gravity has become a huge topic, which is most commonly
known as the semi-classical approach. Here, the quantum contributions enter in the Einstein
equation through quantum expectation values.
But why would one even expect microscopic quantum behaviour to have a significant impact
on macroscopic scales? Generally, we expect that quantum effects should be highly suppressed
on scales of order of the Hubble radius H−1. In a static or non-expanding spacetime this gen-
erally holds true. But since de Sitter space is exponentially expanding, scales of order of the
Planck length can become macroscopic over time. Hence, we can expect microscopic quantum
behaviour to have a significant influence on large scales after some particular time [3]. We can
easily estimate the time at which the Planck length grows to the size of the Hubble radius.
Consider the scale factor of an exponentially expanding universe,

a(t) = a0 e
Ht, (1.1)

where a0 is some initial length scale. Assuming that general relativity approximately remains
valid to just below the Planck scale, the time for the Planck length, lp =

√
G~/c3 ' 1.62 ×
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10−33 cm, to become of order of the Hubble radius is

t ∼ H−1 ln

(
H

lp

)
. (1.2)

For a Hubble parameter of H = 100 kms−1Mpc−1, ln
(
H
lp

)
∼ 40. Then the time when the

Planck length becomes of order of the Hubble radius is around t ∼ 1019s ∼ 1011yrs. Although
we do not require the Planck length to be blown up to quite so large scales for quantum effects
to become significant macroscopically, we see that it is indeed possible.
In this text, we want to investigate explicitly the quantum behaviour of a real scalar field
with respect to a de Sitter background. Due to the explicit time dependence of the metric,
any vacuum choice will evolve during the evolution of the spacetime and therefore lose the
property of being the lowest energy state. Particles defined with respect to the chosen vacuum
will appear sourced by the dynamic motion of the background. In such cases, the definition
of a vacuum is ambiguous and no preference can be given to one particular choice over any
other. Although we can impose physically motivated assumptions such as invariance under
the de Sitter group, which is the compliment of Poincaré invariance in flat space [4], or to
match our theory to the flat space case, where we expect curvature effects to be negligible.
A few years back, a very interesting question has been raised by Krotov and Polyakov [5]: What
effect do the particles, created during the expansion of our universe, have on the cosmological
constant? From classical FLRW cosmology, it is clear that once we add any positive energy
content to our universe, the gravitational pull slows the expansion and can even lead to a big
crunch, depending on its relative magnitude compared to cosmological constant components.
So, can we expect that the particles created during the dynamic evolution of de Sitter spacetime
backreact and slow down the expansion, therefore leading to a time dependent screening of the
cosmological constant?
Much work has been done to arrive at an answer to these questions [5–9]. But as already
noted in the original paper [5] there are certain issues with their formulation. Due to the
ambiguity of the vacuum state, the particle concept is ill-defined and the particle density at
a given moment depends on the choice of vacuum. Hence, if we find the above mentioned
effects, how can we be sure about their validity? Must we require to find vacuum independent
solutions to believe our results? Another point mentioned in [5] is, how strong can these effects
be, considering that particle densities get diluted during the exponential expansion of space?
Even if we see such effects, can we expect them to be negligible?
In the formalism of semi-classical gravity we calculate the regularised quantum expectation
value of the energy-momentum tensor (EMT) for a free scalar field in de Sitter spacetime.
We find that when respecting de Sitter invariance, the contribution to the expectation value
of the EMT will be constant and proportional to the metric and therefore lead to a constant
shift in the cosmological constant. We find that to get time dependent contributions to the
expectation value of the EMT, de Sitter invariance needs to be broken. Introducing scalar
perturbations to the de Sitter metric, we calculate the backreaction on the spacetime. Our
results show that for short wavelength modes the perturbations decay while exhibiting oscil-
latory behaviour. On the other hand the long wavelength modes include a growing solution
which will eventually break perturbation theory.
To get a feeling for our background spacetime, we start by introducing the basics of de Sitter
geometry in sec. 2 [1, 4, 8, 10–13]. Here the details of our geometry are discussed, and the
reasons why physics on a dynamic background brings some complications with it, such as
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non-conservation of energy. Moreover, we discuss the quantisation of a free scalar field on a
curved background in sec. 3 [1, 4, 7, 8, 14–21]. Having discussed the general features, we
specify to FLRW geometries out of cosmological motivation and look at some aspects of our
theory, before we restrict ourselves to the de Sitter geometry. Due to the above mentioned
non-conservation of energy and the ambiguity of the vacuum choice in a dynamic background,
much of the discussion in this section is devoted to the different vacuum choices and the phys-
ical motivation behind them.
Having laid out the foundation of our understanding we turn to the interesting questions
mentioned above, how and if quantum effects can backreact significantly on our spacetime
geometry. We calculate the quantum expectation value of the EMT, which we expect to con-
tribute to the Einstein equation, in sec. 4 [1, 10, 14, 15, 22–28]. We further investigate the
nature of the contribution and what this means physically for different choices of vacua. Out
of regularisation purposes we have to extend beyond conventional general relativity. What
this means for inflation is discussed in sec. 5 [1, 10, 15, 22, 29, 30].
Having discussed the free theory and UV effects extensively, we turn to the other end of the
energy spectrum with the same question in mind. In sec. 6 [1, 4, 5, 8, 9, 15, 23, 31–38] we dis-
cuss the IR limit of the previously obtained results and of loop corrections to the propagator.
We investigate if a deviation from de Sitter invariance can occur due to such loop corrections.
To this end we introduce the closed time path (CTP) formalism, which reduces the ambiguity
of a vacuum choice slightly, as it allows us to do calculations by making reference to only one
vacuum at one specific point in time.
Our results lead to the conclusion, that de Sitter invariance is respected also in loop effects
in the Poincaré patch. Therefore we continue by breaking de Sitter invariance explicitly, by
allowing for backreaction in the metric on a perturbative level. Considering scalar perturba-
tions to the de Sitter background, we investigate their behaviour in the UV and IR limits in
sec. 7.
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Chapter 2

The de Sitter geometry

In this section we want to set the scene by introducing the most important features of de Sitter
spacetime. Firstly, we give a physically motivated introduction in sec. 2.1 [1]. We continue
to the more mathematical side and give the geometric definition of the de Sitter geometry in
terms of a higher dimensional embedding space in sec. 2.2 [10, 11]. As we start to get a feeling
for the geometry, we discuss symmetries in sec. 2.3 [4, 8], which play a very important role
physically. In sec. 2.4 [8, 11, 12] we then describe the most useful coordinate patches. Finally
in sec. 2.5 [12, 13] we discuss the complications arising from the lack of a timelike Killing
vector in de Sitter spacetime for the vacuum choice and when quantising fields on a dynamic
background in general.

2.1 A cosmological motivation for de Sitter

If one wants to build models of the universe as we observe it today, certain restrictions are
posed upon the class of spacetime geometries that one can use. From a geometric viewpoint,
the most important cosmological features of space are homogeneity and isotropy on large
scales, known as the cosmological principle [1]. The spaces which reflect these properties fall
into three categories: flat space, a spatial sphere of constant positive curvature and a spatial
hyperboloid of constant negative curvature [1]. These cases are generally summarised in
terms of the Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime, where the invariant
line element is usually written as

ds2 = dt2 − a2(t)

(
dr2

1−Kr2
+ r2dΩ2

d−2

)
= gµνdx

µdxν , (2.1)

where dΩ2
d−2 is the line element of a d − 2 dimensional sphere and a(t) is the scale factor,

which gives the Hubble parameter, H = ȧ
a = 1

a
d a
dt . Here K = 1 describes a spherical space of

constant positive curvature, K = −1 the hyperbolic space of constant negative curvature and
K = 0 the flat case.
It is very useful to define the conformal time by

dt = a dη, (2.2)

so that the we can write the line element as

ds2 = a2(η)

(
dη2 − dr2

1−Kr2
+ r2dΩ2

d−2

)
. (2.3)
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This is useful as for K = 0 we are just working in a conformally flat spacetime.
De Sitter spacetime is the FLRW solution of a universe dominated by the cosmological con-
stant. In this case the Einstein equation becomes

Rαβ −
1

2
gαβR− Λgαβ = 0. (2.4)

Upon contraction we can easily see, that de Sitter spacetime has constant positive curvature1

(for d > 2) and Λ > 0,

R = − 2d

d− 2
Λ. (2.5)

Substituting back into the Einstein equation, we see that the Ricci tensor is proportional to
the metric,

Rαβ = − 2

d− 2
Λgαβ. (2.6)

On cosmological scales, the EMT of a perfect fluid, specified by its energy density ρ, pressure
p and d-velocity uµ,

Tµν = (ρ+ p)uµuν − gµνp, (2.7)

is usually a good approximation to describe matter in our universe. From this EMT we
see, that we could realize the cosmological constant also by the equation of state ρ = −p =
const., driving the expansion of the universe. Solving the different components of the Einstein
equation for a FLRW spacetime with a perfect fluid, we obtain the well known Friedmann
equations

H2 +
K

a2
=

2

(d− 2)(d− 1)
(8πρ+ Λ)

ä

a
= − 8π

d− 2

(
d− 3

d− 1
ρ+ p

)
+

2

(d− 2)(d− 1)
Λ.

(2.8)

To obtain the pure de Sitter form of these equations, we simply set p = ρ = 0, resulting in

H2 +
K

a2
=

2

(d− 2)(d− 1)
Λ

ä

a
=

2

(d− 2)(d− 1)
Λ,

(2.9)

from which we see that the Hubble parameter has a constant value in the de Sitter case and
that our universe expands (contracts) exponentially for Λ > 0 (Λ < 0). In the de Sitter case
the different values of K describe the same physical spacetime in different coordinate systems
[1]. We can therefore set K = 0. Then the Einstein equation gives the relation,

Λ =
(d− 2)(d− 1)

2
H2. (2.10)

For this it is apparent that H = ȧ/a is an exact constant for de Sitter space and only depends
on the energy content our our universe which is given by Λ.

1The notion of positive and negative curvature are conventional and depend on the choice of the metric
signature and the definition of the Riemann tensor. We have taken the convention that positive curvature is
equivalent to a negative Ricci scalar.



2.2 The geometric definition 7

XA(x)

XA(x̄)

√
(X0)2 +H−2

Xa

X0

Figure 2.1: A simplified graphical representation of the embedded hyperboloid described by
eq. 2.11. The spatial dimensions {Xa}a=1,...,D−1 are represented together on the horizontal
axis. Every point in time, X0, represents a (D − 1)-sphere of radius

√
(X0)2 +H−2. Also

visualised are a point XA(x) and its antipodal complement XA(x̄).

2.2 The geometric definition

De Sitter space in d dimensions, dSd, can be embedded as a hyperboloid in D = d + 1
dimensional Minkowski spaceMD with coordinates {XA}A=0,...,D−1,

(X0)2 − (X1)2 − . . .− (XD)2 = ηABX
AXB = −H−2, A,B = 0, . . . , D − 1, (2.11)

where ηAB = diag(1,−1, . . . ,−1) and H is just some constant which will turn out to equal the
Hubble parameter. By analytic continuation X0 → iX0, eq. 2.11 can be related to a D dimen-
sional sphere. Furthermore, eq. 2.11 describes a (D − 1)-sphere with radius

√
(X0)2 +H−2,

as shown in fig. 2.1.
Let us now investigate the further geometric properties resulting from this embedding

condition. We start with computing an expression for the metric by taking the differential of
ηαβX

αXβ − (XD)2 = −H−2, to find

dXD =
ηαβX

αdXβ

XD
= ±

ηαβX
αdXβ√

ηµνXµdXν +H−2
, (2.12)

where α, β = 0, . . . , d − 1. Moreover, we can define new coordinates {xα}α=0,...,d−1 on dSd

with a line element
ds2 = ηAB dX

A dXB = gαβ dx
α dxβ. (2.13)

The metric gαβ is then given by

gαβ = ηαβ −
XαXβ

ηµνXµXν +H−2
(2.14)

which can be easily inverted to

gαβ = ηαβ +H2XαXβ. (2.15)
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Furthermore, for the Christoffel symbols one finds

Γαβγ = −H2

(
Xαηβγ −

XαXβXγ

ηµνXµXν +H−2

)
. (2.16)

Using these results, we can directly calculate the Ricci tensor as

Rαβ = −(d− 1)H2gαβ = − 2

d− 2
Λgαβ, (2.17)

in agreement with the previous result, eq. 2.6, if we interpret H as the Hubble parameter. By
contracting with the above metric, we find the Ricci scalar

R = −d(d− 1)H2 = − 2d

d− 2
Λ, (2.18)

which also agrees with the previous result, eq. 2.5. Therefore we conclude, that eq. 2.11 is
indeed a solution for eq. 2.10. Since dSd is a maximally symmetric space, the Riemann tensor
is given by [10, 11],

Rαβγδ =
R

d(d− 1)
(gαγgβδ − gαδgβγ) , (2.19)

determined fully in terms of the Ricci scalar and the metric. This further leads to the identities

RαβγδR
αβγδ =

2R2

d(d− 1)
, and RαβR

αβ =
R2

d
. (2.20)

2.3 Symmetries and the geodesic distance

As already noted, de Sitter spacetime is maximally symmetric, meaning that it possesses
the same number of symmetries as Minkowski space. We observe that eq. 2.11 is invariant
under the action of the full de Sitter group O(1, d). O(1, d) is also referred to as Poincaré or
inhomogeneous Lorentz group in the literature. For a general element Ω ∈ O(1, d), there are
four disconnected components characterised by det Ω = ±1 and Ω0

0 ≥ 1 or Ω0
0 ≤ −1. Let

SO(1, d) be the component containing the identity element,

SO(1, d) := {Ω ∈ O(1, d) | det Ω = +1, Ω0
0 ≥ 1}. (2.21)

In this subgroup the direction of time and parity are conserved. Time reversal and spatial
reflection can be characterised by

T = diag(−1, 1, . . . , 1) ∈ O(1, d),

P = diag(1,−1, 1, . . . , 1) ∈ O(1, d)
(2.22)

respectively [4]. Using these elements, we can easily define the other three components of
O(1, d), which contain elements connected to

• time reversal,

OT (1, d) := {Ω · T |Ω ∈ SO(1, d)} = {Ω ∈ O(1, d) | det Ω = −1, Ω0
0 ≤ −1}, (2.23)
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• spatial reflection,

OP (1, d) := {Ω · P |Ω ∈ SO(1, d)} = {Ω ∈ O(1, d) | det Ω = −1, Ω0
0 ≥ 1}, (2.24)

• and spacetime reflection,

OTP (1, d) := {Ω · T · P |Ω ∈ SO(1, d)} = {Ω ∈ O(1, d) | det Ω = 1, Ω0
0 ≤ −1}. (2.25)

For every point x ∈ dSd or XA(x) ∈ Md+1 there exists an antipodal point x̄ ∈ dSd or
XA(x̄) ∈Md+1. These related by the transformation

A = diag(−1,−1, . . . ,−1) ∈ OT (1, d), (2.26)

which is an element of OT (1, d) for even d. Therefore for antipodal points XA(x) = −XA(x̄)
[4]. These are visualised in fig. 2.1.
The geodesic distance between two spacetime points x and y connected by a geodesic with
affine parameter λ is defined as [4]

d(x, y) =

∫ y

x

√
ηµνẊµẊνdλ. (2.27)

By complete analogy with the sphere, the geodesic distance for de Sitter geometry can be
written as [8] 2

d(x, y) =
1

H
arccosZ(x, y). (2.28)

where we have defined a function of spacetime points x and y,

Z(x, y) := −H2ηABX
A(x)XB(y), (2.29)

which is symmetric in x and y and under antipodal transformations Z(x, y) = −Z(x̄, y). Hence
Z alone does not distinguish between past and future light cones [18]. The function Z(x, y)
can also be written in terms of the squared distance between two point in the embedding
space, Xµ(x) and Xµ(y), as

Z(x, y)− 1 =
H2

2

(
XA(x)−XA(y)

)2
,

Z(x, y) + 1 = −H
2

2

(
XA(x)−XA(ȳ)

)2
.

(2.30)

From these results we can determine bounds on Z(x, y), depending on the separation of x and
y. The results are summarised in fig. 2.2. We see that if x is within the light cone of y, Z > 1
and Z → 1 as x approaches the boundaries of the light cone. For Z < −1 no geodesic exists
that joins XA(x) and XA(y). For antipodal points Z = H2ηABX

A(x)XB(x) = −1, which
therefore just remain in causal contact with each other. There are two geodesics connecting a
point with its antipodal point. This can be seen from fig. 2.1, imagining that we can move in
either direction around the hyperboloid.

2The geodesic distance d on a sphere of radius r is d = rθ, where θ is the angle separating two points x
and y on the surface of the sphere. Hence, in Euclidean space we have x · y = r2 cos θ = r2 cos(d/R).
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Z
=
−1

Z
=
−
1

Z
=
−
1

Z
=
−1

Z
=

1

Z
=

1Z
=

1

Z
=

1

y
ȳ ȳ

Z < −1

Z < −1

Z < −1

Z < −1

Z > 1

Z > 1

−1 < Z < 1 −1 < Z < 1

I−

I+

Figure 2.2: The values of Z(x, y) in certain regions of space, for fixed y. The dashed vertical
lines on the far left and right are to be identified with each other. Halfway between y and ȳ,
on the vertical dotted lines, Z = 0 [4].

2.4 Coordinate patches on the de Sitter spacetime

To do actual physically relevant calculations, it is very useful to specify different coordinate
systems covering our geometry. Below we will quickly review the most relevant de Sitter
coordinate patches. A more extensive discussion can be found e.g. in [1].

2.4.1 The global patch

Global coordinates are the solution of eq. 2.11 given by [8, 11]

X0 =
1

H
sinh(Ht),

Xi =
1

H
cosh(Ht) sin θ1 . . . sin θi−1 cos θi,

XD =
1

H
cosh(Ht) sin θ1 . . . sin θi,

(2.31)

where i = 1, . . . , D − 1. In these coordinates the induced metric becomes

ds2 = dt2 − cosh2(Ht)

H2
dΩ2

D−2. (2.32)

These coordinates cover the complete manifold and hence the topology of de Sitter space is
R× SD−2.
Comparing with the FLRW case, as defined in eq. 2.1, here

a(t) =
cosh(Ht)

H
, (2.33)

which corresponds to the K = 1 FLRW solution. Hence de Sitter space describes a spatial
sphere with radius a(t). It contracts from a(−∞) = ∞ to a(∞) = ∞, reaching its minimum
at a(0) = 1

H . In the inflationary paradigm these coordinates are less useful, as the contracting
phase has no place. In that case one generally turns to Poincaré coordinates, discussed in the
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next section.
The conformal time, defined dy dη = dt/a(t) is given by

η = 2 arctan

(
tanh

(
Ht

2

))
, (2.34)

and covers the range −π
2 < η < π

2 .
Lastly, we want to calculate Z(x, y) in these coordinates via eq. 2.29, resulting in

Z = cosh(Htx) cosh(Hty)
(

cos θ1 cosφ1

+ sin θ1 sinφ1

(
cos θ2 cosφ2

+ sin θ2 sinφ2

(
cos θ3 cosφ3

+ . . .

+ sin θD−4 sinφD−4

(
cos θD−3 cosφD−3

+ sin θD−3 sinφD−3 cos(θD−2 − φD−2)
)
. . .
)

− sinh(Htx) sinh(Hty),

(2.35)

where x = (tx, θ1, . . .) and x = (tx, φ1, . . .). In global coordinates Z has a quite complicated
form, but still obeys the bounds in 2.2. We will see that in Poincaré coordinates we will have
a much simpler expression for Z.

2.4.2 The expanding and contracting Poincaré patches

Poincaré coordinates are the solution of eq. 2.11 given by [8]

X0 =
1

H
sinhHt+

H

2
eHt(xi)2,

Xi =xieHt,

XD =− 1

H
coshHt+

H

2
eHt(xi)2,

(2.36)

where i = 1, . . . , D − 1. In these coordinates the induced metric becomes

ds2 = dt2 − e2Htδijdx
idxj , (2.37)

The Poincaré patch correspond to a flat (K = 0) FLRW universe with a(t) = eHt, describing
exponentially expanding spatial slices, or in other words, an exponentially expanding universe.
In this case it is especially useful to introduce a conformal time,

η =

∫
dt e−Ht = − 1

H
e−Ht, (2.38)

so that the metric becomes

ds2 =
1

H2η2

(
dη2 − δijdxidxj

)
, (2.39)

with a(η) = 1
H2η2

. We see that the range −∞ < t < ∞ corresponds to −∞ < η < 0. These
coordinates cover only half of the complete manifold, as can be seen from X0 −XD = 1

H e
Ht

which implies X0 ≥ XD. Consequently this patch is usually referred to as the expanding
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Poincaré patch. These coordinates are most often used in inflationary cosmology as they
only describe the expanding part of the spacetime, which is a good approximation for the
inflationary stage. The other half of our manifold is reached by letting t → −t. Here a(t) =
e−Ht and therefore this is usually referred to as contracting Poincaré patch.
Using eqs. 2.36 we can easily calculate Z(x, y) via eq. 2.29,

Z(x, y) = 1 +
(ηx − ηy)2 − (x− y)2

2ηxηy
. (2.40)

This has a much nicer form than above and we will encounter it again and again in the
forthcoming sections.

2.4.3 The static patch

There is another set of coordinates, which are referred to as static coordinates. They are given
by the set [12]

X0 =
1

H

√
1− (rH)2 sinh(Ht),

Xi =r sin θ1 . . . sin θi−1 cos θi,

XD =
1

H

√
1− (rH)2 cosh(Ht),

(2.41)

where i = 1, . . . , D − 1. The metric takes the form

ds2 = (1− (Hr)2)dt2 − dr2

1− (Hr)2
− r2dΩD−3. (2.42)

Horizons in these coordinates correspond to r = 1/H and t = ±∞, where the coordinates
become singular. We can extend them to r > H, but then t and r flip their respective roles –
t becomes spacelike and r becomes timelike.
These coordinates are interesting, because they are the only set of coordinates, in which the
metric takes a time-independent form. The implications of this will be discussed in the next
section.

2.5 Timelike Killing vector fields

The notion of a timelike Killing vector is essential for energy conservation, choosing a vacuum
state and therefore having a clear notion of particles in our spacetime. Here we want to
investigate timelike Killing vectors in de Sitter space.
By looking at the metrics eq. 2.32 and eq. 2.39, we see that both of them carry explicit time
dependence and therefore neither ∂t nor ∂η are Killing vectors in these coordinates.
But now consider the metric of the static patch, eq. 2.42. Here we have no time dependence
at all and therefore ∂t represents a Killing vector. The problem here is that at the horizon
r = 1/H the coordinates become singular and the norm of ∂t vanishes. Hence the spacetime
is essentially cut into four pieces, which can be seen from the conformal diagram in fig. 2.3.
Also indicated on the diagram is the flow of the Killing vector field ∂t. Hence there is no
globally timelike Killing vector in de Sitter space [12]. Consequently, there is no notion of
energy conservation, no global vacuum state and therefore no global notion of particles. We
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r > H−1

r
<
H
−

1

r > H−1

r
<
H
−

1

r = H−1

t = −∞
r = H−1

t =∞

Figure 2.3: The conformal diagram of the static de Sitter patch. The space is split into four
wedges by the horizons. The arrows indicate the flow of the Killing vector field ∂t.

base most physical interpretations in quantum field theory nowadays on the concept of energy
and a unique Fock vacuum state. Now we have to pay a high price for the lack of energy
conservation and hence the missing notion of a vacuum state.
An interesting approach would be to try and build a theory around the existing symmetries
of a given spacetime. The usual steps to follow would be to construct the invariant Casimir
operators out of the symmetry group generators. In a flat spacetime we generally have Poincaré
invariance – in particular time translational symmetry, which is responsible for global energy
conservation. In de Sitter spacetime we are missing exactly this time translational symmetry
and hence violate energy conservation. Taking this path, one finds that the group theoretic
approach leads to the same scalar field equation of motion as if we would construct an invariant
scalar action and take its variation. The latter is the approach we will take in sec. 3. A nice
and short discussion of the other path is given for example in [13]. The main point is that the
quadratic invariant Casimir operator of SO(1, 4) in the Poincaré patch takes the exact same
form as the differential operator derived from the variation of the action.
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Chapter 3

Scalar fields in a de Sitter background

In this section we want to, first of all, point out the steps to generalize the action of any field
in Minkowski space to any other spacetime geometry in sec. 3.1 [14]. Then we proceed to
analyse the action we constructed for a scalar field first in a general FLRW spacetime (sec.
3.2 [14, 15]) and discuss specific coupling terms in sec. 3.3 [1, 14]. Then we specify to de
Sitter spacetime. We discuss how to quantise our scalar field in the expanding Poincaré patch,
solve for the mode functions (sec. 3.4 [1, 4, 8, 16–21]) and discuss the vacuum ambiguity by
considering the diagonalisation of the Hamiltonian. Furthermore we construct the two point
function for the euclidean vacuum, which corresponds to one particular vacuum choice (sec.
3.5 [4, 8, 18]) explicitly. Lastly, we generalise the two point function for any physically sensible
alternative choice of vacuum in sec. 3.6 [7] and then construct other Green functions from
the two point function, discuss de Sitter invariance and what this means for different vacuum
choices 3.7 [4, 18].

3.1 Generalizing actions to curved spacetime

In flat Minkowski spacetime the action of a free scalar field is given by

S[φ] =
1

2

∫
ddx

(
ηµν∂µφ(x)∂νφ(x)−m2φ(x)2

)
. (3.1)

If our goal is to generalise this to curved spacetime we require general covariance. To achieve
this we must preform the following changes [14],

• Replace the Minkowski metric by our general spacetime metric, ηµν → gµν .

• Replace standard derivatives by covariant derivatives, ∂µ → ∇µ.

• Make the integral measure in the action covariant by replacing ddx → ddx
√
|g|, where

g = det gµν .

Following these steps, we can write down the action of a massive scalar field with a general
curved background

S[φ, gµν ] =
1

2

∫
ddx
√
|g(x)|

[
gµν∇µφ(x)∇νφ(x)−m2φ2(x)

]
, (3.2)

where the action is now generally covariant and of course now has functional dependence on
gµν .
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3.2 Free scalar fields in a FLRW universe

Having constructed the scalar field action for a general spacetime, let us keep things general as
long as possible and start by analysing a free scalar field in a d-dimensional FLRW spacetime,
with metric

ds2 = a2(η)
(
dη2 − δijdxidxj

)
, i, j = 1, . . . , d− 1. (3.3)

Later we can specialize to the de Sitter case, by specifying the form of the scale factor a(η).
We start from the action of a scalar field, eq. 3.2 which we constructed above,

S[φ, gµν ] =
1

2

∫
ddx

√
|g(x)|

[
gµν∇µφ(x)∇νφ(x)−m2φ2(x)

]
. (3.4)

Substituting the above metric, integrating by parts and using
√
|g| = ad,

S[φ, a] = −1

2

∫
ddx adφ(x)

[
� +m2

]
φ(x). (3.5)

The standard approach in flat space quantum field theory is to canonically normalize fields to
obtain a kinetic term of the form

1

2
ηµν∂µφ∂νφ or equivalently − 1

2
φ�Mφ, (3.6)

where �M := ηµν∂µ∂ν is the Minkowski d’Alembertian operator. In the above action,

−1

2
adφ�φ = −a

d−2

2
φ�Mφ−

(d− 2)

2

a′ad

a3
φφ′, (3.7)

which does not resemble a canonically normalised kinetic term in the action. But if we define
a new auxiliary field χ(x) = a

d−2
2 φ(x) [14, 15], we find that

−1

2
adφ�φ = −1

2
χ�Mχ+

d− 2

8

(
(d− 4)

(
a′

a

)2

+ 2
a′′

a

)
χ2. (3.8)

This gives the correct canonically normalised term, but with the price of introducing a time
dependent mass-like term. We can now transform to partial Fourier space,

χ(x) =

∫
d̄d−1k χk(η) eik.x, (3.9)

where we only transform the spatial coordinates, due to the η dependence of the scale factor
in the metric. The definition of the integral measure d̄d−1k is given in app. A. Then the full
action in partial Fourier space, in terms of mode functions, becomes

Sk′,k[χ, a] = −1

2

∫
ddxχk′

[
∂2
η + k2 +m2a2 − d− 2

4

(
(d− 4)

(
a′

a

)2

+ 2
a′′

a

)]
χk. (3.10)

This resembles a harmonic oscillator with time dependent frequency, which is essentially a
very general feature of quantum field theory in curved spacetime.
We must at this point stress that taking the limits of low or high momenta is not as simple as
in flat space. In flat space we usually take the scalar field mass as the given energy scale and
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then compare k2/m2 to define what we mean by ultraviolet (UV: k/m → ∞) and infrared
(IR: k/m→ 0). As soon as we move within a dynamic background we have the complication
that the quantities we should compare are k2/(ma)2 and as a changes, our definitions of UV
and IR change simultaneously. To this end we can define the comoving momentum k/a, which
is a scale that does not change with the expansion of the universe.
For example in the expanding Poincaré patch of de Sitter we have a2 = (Hη)−2 and hence

k2

a2m2
= (kη)2H

2

m2
, (3.11)

which sets the energy scale. So when we talk about the IR or UV limit in this patch of de
Sitter space, what we mean is that (kη)2 � m2/H2 or (kη)2 � m2/H2 respectively. This
then allows us to drop either the second or third them in eq. 3.10. Therefore, we have seen
that defining UV and IR regimes in curved, dynamic spacetimes is not quite as simple as for
the static cases.

3.3 The addition of interaction terms

So far the effect of a curved background was only due to the generalisation of the integral
measure and the introduction of covariant derivatives. But we can also explicitly couple our
field to the background, by introducing an interaction term,

S[φ, gµν ] =
1

2

∫
ddx
√
|g(x)|

[
gµν∇µφ(x)∇νφ(x)−m2φ2(x)− ξRφ2(x)

]
, (3.12)

which allows for a dimensionless coupling parameter ξ. In a general dimensional FLRW
spacetime the Ricci scalar is given by

R = −(d− 1)
(d− 4)a′2 + 2aa′′

a4
. (3.13)

Adding the ξRφ2 term to eq. 3.10 and substituting the above result, we find

Sk′,k[χ, a] =

= −1

2

∫
ddxχk′

[
∂2
η + k2 +m2a2 − (d− 1)

(
d− 2

4(d− 1)
− ξ
)(

(d− 4)

(
a′

a

)2

+ 2
a′′

a

)]
χk.

(3.14)

So we see that if our theory is conformally coupled, ξ = d−2
4(d−1) , the only term where spacetime

curvature changes the form of the action is in the mass term. This is expected since the mass
fixes an energy scale and is hence not conformally (scale) invariant. Whereas spacetimes such
as FLRW are conformally flat, gµν = a2(η)ηµν , and hence a conformally invariant theory with
conformal coupling leaves the action completely invariant.
On the other hand, setting ξ = 0 is known as minimal coupling. Minimal, as the curvature
effects are still manifest in the action due to the determinant of the metric.
For d = 4 the term with first order derivative of the scale factor disappears and the action
simplifies to

Sk′,k[χ, a] = −1

2

∫
ddxχk′

[
∂2
η +

[
k2 +m2a2 − (1− 6ξ)

a′′

a

]]
χk. (3.15)
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The equation of motion resulting from this action for a minimally coupled field,[
∂2
η + k2 +m2a2 − a′′

a

]
χk = 0 (3.16)

is known as the Mukhanov-Sasaki equation [1, 14].
Summarizing, we have established that explicit mass terms break conformal invariance as they
fix a certain energy scale, which in return is not invariant under conformal transformations.
Additionally, we have found that conformal coupling of a free, massless scalar theory decouples
from gravity completely.
If we add interaction terms, which contain higher powers (n > 2) of fields we have terms of
the form

S[χ, a] =

∫
ddx

(
. . .+ ad

λ

n
φn(x)

)
=

∫
ddx

(
. . .+ ad−

n
2

(d−2)λ

4
χn(x)

)
(3.17)

in the action, which again couples to gravity. But also here, for the special case when n = 2d
d−2 ,

the interaction terms decouple from gravity. This is the case for example for λφ4 theory in
d = 4 dimensions.

3.4 Quantising scalar fields in the expanding Poincaré patch

In this section we want to compute the mode functions of a scalar field in the Poincaré patch
of dSd. For the expanding Poincaré patch we have a2 = 1/(Hη)2, where η has the range
−∞ < η < 0 as −∞ < t < ∞. But since a > 0 we will, for simplicity, always consider the
magnitude of η here and redefine η : ∞ → 0 as t : −∞ → ∞. We start from the action of a
scalar field in a FLRW universe, given by eq. 3.10, which after substituting for a(η) becomes

Sk′,k[χ, a] = −1

2

∫
ddxχk′

[
∂2
η + k2 +

m2

(Hη)2
− d(d− 2)

4η2

]
χk. (3.18)

We have not included any coupling terms such as ξRχ2, but one could easily generalize this
to the coupled case by generalising m2 to the effective mass M2 = m2 − ζR + . . ., i.e. the
mass term of our scalar field plus additional (constant) terms describing coupling to curvature.
This can be done so easily because for de Sitter R = const., from eq. 2.5.
We have already expanded the field χ in partial Fourier modes,

χ(x) =

∫
d̄d−1kχk(η)eik.x. (3.19)

Since the field φ is real, so is the auxiliary field χ, the mode functions must obey χ∗k = χ−k.
We see from eq. 3.10, that the differential operator only depends on k = |k| and so the general
expansion of the mode functions is [1]

χk(η) =
1√
2

(
akq
∗
k(η) + a†−kqk(η)

)
, (3.20)

where qk and q∗k are linearly independent solutions to the equation on motion and as χk is real,
a†k and ak are conjugate operators. Let us consider these creation and annihilation operators
to define some arbitrary Fock space for now. Upon substituting this mode expansion into
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eq. 3.18, we see that in the Poincaré patch, the equation of motion for the mode functions
becomes [

η2∂2
η + (kη)2 +

m2

H2
− d(d− 2)

4

]
qk = 0. (3.21)

This equation is the Bessel function in disguise, with the solutions

qk(η) =

√
πη

2

(
A1H

(1)
n (kη) +A2H

(2)
n (kη)

)
, (3.22)

where n :=
√

(d−1)2

4 − m2

H2 , H
(1,2)
n (kη) are the standard Hankel functions and A1, A2 are com-

plex coefficients. By imposing the (equal time) commutation relations of the field χ with the
canonical momentum π = δ S

δχ′ = χ′, where ( . )′ := ∂ .
∂η ,

[χ(x), χ(y)]x0=y0 = [π(x), π(y)]x0=y0 = 0,

[χ(x), π(y)]x0=y0 = iδ(d−1)(x− y),
(3.23)

or equivalently for the operators ak and a†k[
ak, ak′

]
=
[
a†k, a

†
k′

]
= 0,[

ak, a
†
k′

]
= δ(d−1)(k − k′),

(3.24)

we can also fix the normalisation of our mode functions. In order to obey the above commu-
tation relations, we find that the mode functions must satisfy

qk(q
∗
k)
′ − (qk)

′q∗k = W [qk, q
∗
k] = −2i, (3.25)

whereW [., .] is the Wronskian. Note that forW [qk, q
∗
k] 6= 0 the solutions qk and q∗k are linearly

independent. For the solution eq. 3.22 we find the normalisation condition

|A1|2 − |A2|2 = 1. (3.26)

Therefore we can parametrise these coefficients as

A1 = coshα and A2 = sinhα eiβ, (3.27)

up to an overall phase and the general mode function becomes

q
(α,β)
k (η) =

√
πη

2

(
coshα H(1)

n (kη) + sinhα eiβ H(2)
n (kη)

)
. (3.28)

We see that we have a two parameter freedom for the choice of our mode function. In principle
we should now check if diagonalisation of the Hamiltonian fixes any of these parameters further.
To this end, let us consider the Hamiltonian of the free theory for our auxiliary field,∫

dη H(η) =

∫
ddxπ∂ηχ− S[χ, gµν ], (3.29)
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where S[χ, gµν ] is the action of our auxiliary field from eq. 3.10. Upon substituting the mode
expansion from eq. 3.20, the Hamiltonian becomes

H(η) =

∫
d̄d−1k

1

2

[(∣∣∣q(α,β)
k

′∣∣∣2 + ω(η)2
∣∣∣q(α,β)
k

∣∣∣2) a†kak
+

(
q

(α,β)
k

′2
+ ω(η)2q

(α,β)
k

2
)
a†ka

†
−k + h.c.

]
,

where ω(η)2 = k2 +m2a2 − (d− 1)

(
d− 2

4(d− 1)
− ξ
)(

(d− 4)

(
a′

a

)2

+ 2
a′′

a

)
.

(3.30)

Essentially all complications arise because ω(η)2 has explicit time dependence through the
scale factor. The second term is the problematic one as they mix Fock states of different
occupation number. The Hamiltonian would be diagonalised at all times, if

q
(α,β)
k

′2
+ ω(η)2q

(α,β)
k

2
= 0 ∀ η. (3.31)

The formal solution to this equation is proportional to

q
(α,β)
k ∝ e±i

∫ η dτ ω(τ), (3.32)

but this is not equal to the solution we found in eq. 3.28. Therefore, one would have to
newly diagonalize the Hamiltonian at each value of η [8]. This is the point where we have
to give up the idea of a global Fock space. In flat space, the plane wave solution solves the
equation of motion and to the above equation simultaneously and hence the Hamiltonian can
be diagonalised for all times.
The best we can do is investigate if we can diagonalise the Hamiltonian in the asymptotic past
or future. Since our mode functions depend on the product kη only, up to a multiplicative
factor, this is equivalent of investigating the regimes of large and small comoving momenta.
With this in mind let us look at the limiting cases of our solution in eq. 3.28. For kη → ∞,
corresponding to our UV regime with large comoving momentum, the mode functions become
to leading order

q
(α,β)
k (η) =

1√
k

(
coshα eikη + i sinhαeiβe−ikη +O

(
(kη)−1

))
, kη →∞, (3.33)

up to an overall phase. In this limit the mode functions behave as plane waves. The coef-
ficients do not mix and we get separate behaviour for the two different solutions H(1,2)

n (kη),
respectively.
For kη → 0, corresponding to our IR limit with small comoving momenta the mode functions
become

q
(α,β)
k (η) =

√
η
(
B1(kη)−n +B2(kη)n +O

(
(kη)2−n)) , kη → 0, (3.34)

where the coefficients are

B1 = −i2
n(coshα− sinhα eiβ)Γ(n)√

2π
and

B2 =

√
π

2

(1 + i cot(πn)) coshα+ (1− i cot(πn)) sinhαeiβ

2nΓ(n+ 1)

(3.35)
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Here we see that the coefficients mix and to impose a specific behaviour in the IR limit, we
must take a different linear combination of Hankel functions to kill either of B1 or B2. To get
B1 = 0 we simply set

coshα = sinhα eiβ giving B2 =

√
π

2

2 sinhαeiβ

2nΓ(n+ 1)
. (3.36)

Alternatively, to set B2 = 0 we must let

coshα = sinhα eiβ+2iπn giving B1 = i
2nΓ(n)(1− e2iπn) sinhα eiβ√

2π
. (3.37)

Recall that the physical field is given by φ = (Hη)
d−2
2 χ. Hence, for m 6= 0 the mode functions

in the IR decay to zero as η → 0, independently of n being real or imaginary. For real n they
homogeneously decay to zero and for imaginary n they oscillate while decaying.
Now let us come back to the question of appropriate boundary conditions and Hamiltonian
diagonalisation. For short distance scales in the UV regime, ω2 ≈ k in eq. 3.30 and therefore
the Hamiltonian reduces to flat Minkowski case. This is expected, as the large scale curvature
of the spacetime will become completely negligible in this limit. Therefore we expect the mode
functions to agree with the Minkowski solutions in the UV, and we can impose the condition

qk(η) =
1√
k
eikη, kη →∞. (3.38)

This condition is achieved by setting α = 0 and defines the so called Bunch-Davies (BD) modes
[8]. Imposing this boundary condition, the mode functions diagonalise the Hamiltonian in the
UV. Therefore we get the correct UV behaviour and with it a notion of particles and the flat
space QFT we are used to [8].
Since the UV limit corresponds to kη → ∞ we can interpret is as “early time” limit and
therefore the BD-vacuum is also referred to as the in-vacuum, diagonalising the Hamiltonian
at “early time”. Similarly we can define the out-vacuum, corresponding to the mode functions
which diagonalise the Hamiltonian at “late times”, corresponding to the IR limit kη → 0. From
eq. 3.34 and the discussion below we know that these mode functions always decay in the IR
limit and hence we are not forced to set either B1 or B2 to zero to achieve diagonalisation of
the Hamiltonian. Although the leading order contribution will come from the first term in eq.
3.34, and we can set B2 to zero.
Therefore we find the full expression for the BD mode expansion of our field,

χ(x) =

√
πη

4

∫
d̄d−1k

(
akH

(1)∗
n (kη)eik.x + a†kH

(1)
n (kη)e−ik.x

)
, or

φ(x) = (Hη)
d−1
2

√
π

4H

∫
d̄d−1k

(
akH

(1)∗
n (kη)eik.x + a†kH

(1)
n (kη)e−ik.x

)
.

(3.39)

This mode expansion now gives the correct UV behaviour, matching onto scalar quantum
field theory in flat space in the limit of large momenta and/or negligible curvature. This
consequently defines a specific vacuum ak

∣∣ 0〉 = 0, which will be referred to as the Bunch-
Davies vacuum.
But what about the other choices of (α, β)? For convenience, let us define

f
(α,β)
k (x) := q

(α,β)
k (η)e−ik.x. (3.40)
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Having fixed one particular mode solution, we can express the general (α, β)-mode function
as

f
(α,β)
k (x) = coshα fk(x) + sinhα eiβf∗k(x), (3.41)

which defines a mode-independent Bogoliubov transformation. By a trivial Bogoliubov trans-
formation the BD modes can be chosen to obey

f∗k(x) = fk(x̄), (3.42)

where x̄ represents the antipodal point of x. This transformation does not mix positive and
negative frequency modes and therefore defines an equivalent vacuum state [4].
But the Bogoliubov transformation does mix positive and negative frequency modes, and hence
the creation and annihilation operators also become dependent on the Bogoliubov coefficients.
Therefore we can express our field as

φ(α,β)(x) =

∫
d̄d−1k

[
â

(α,β)
k f

(α,β)
k

∗
(x) + â

(α,β)
k

†
f

(α,β)
k (x)

]
, (3.43)

where φ(α,β)(x) = φ(x), the superscript is only a reminder in terms of which modes we are
expanding. Since we define a Fock space vacuum through the annihilation operator,

â
(α,β)
k

∣∣ 0(α,β)
〉

= 0, (3.44)

we also obtain a full class of two parameter (α, β)-vacua.
We can relate creation and annihilation operators to each other by substituting the new modes,
eq. 3.41 into eq. 3.43,

ak = coshαa
(α,β)
k + sinhα eiβ a

(α,β)
k

†
(3.45)

and by inverting we find
a

(α,β)
k = coshαak − sinhα eiβ a†k. (3.46)

Alternatively, we can express this Bogoliubov transformation through a unitary operator [16,
17]

a
(α,β)
k = B(α,β) akB

(α,β)† with

B(α,β) := exp

(
1

2

∫
dd−1k α

(
eiβa†2k − e

−iβa2
k

))
,

(3.47)

a proof of which we give in app. B. Therefore, even though the transformation mixed positive
and negative frequency modes, any physical observables are left invariant by unitary transfor-
mations [17]. Hence we can also write the new vacuum in terms of the BD one as squeezed
states [18] ∣∣ 0(α,β)

〉
= B(α,β)

∣∣ 0〉. (3.48)

This transformation leads to states invariant under the proper (time preserving) de Sitter
group SO(1, d) and are known as Mottola-Allen vacua [4, 16]. For clarity we will refer the
this class as (α, β)-vacua. Note any α vacuum will contain a particle spectrum with respect
to the BD vacuum or any other α′ 6= α vacuum as we will show shortly. We can express the
unitary operator representing the Bogoliubov transformation as [19, 20]

B(α,β) = e
1
2
eiβ tanhα

∫
dd−1k a†2k

(
1

coshα

)∫
dd−1k a†kak+ 1

2

e−
1
2
e−iβ tanhα

∫
dd−1k a2k . (3.49)
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Therefore we can express the (α, β)-vacuum through the BD vacuum as

∣∣ 0(α,β)
〉

=
1√

coshα
exp

(
1

2
tanhα eiβ

∫
dd−1k a†2k

) ∣∣ 0〉, (3.50)

which includes only even occupation number states. From this we can easily see that the
overlap of any transformed vacuum with the BD vacuum is〈

0 | 0(α,β)
〉

=
1√

coshα
. (3.51)

We can even compute the overlap of two different vacua as [20]〈
0(α,β) | 0(α′,β′)

〉
=

1√
coshα′ coshα

(
1− tanhα′ tanhα ei(β′−β)

) , (3.52)

from which we can also reproduce the overlap with the BD vacuum by setting α = 0. Hence
we see that different (α, β)-vacua are not orthogonal.
Any (α, β)-vacua will contain particles with respect to the BD vacuum. We can easily compute
the number of particles by calculating the expectation value of the (α, β)-number operator for

each mode, n(α,β)
k = a

(α,β)
k

†
a

(α,β)
k in the BD vacuum,〈

0
∣∣∣n(α,β)

k

∣∣∣ 0〉 =
〈

0(α,β) |nk | 0(α,β)
〉

=
〈

0
∣∣∣B(α,β) a†kB

(α,β)†B(α,β) akB
(α,β)†

∣∣∣ 0〉
=
〈

0
∣∣∣ (coshαa†k − sinhα e−iβ ak

)(
coshαak − sinhα eiβ a†k

) ∣∣∣ 0〉
= sinh2 α,

(3.53)

where nk = n
(0,0)
k is the BD number operator. Hence we see that for different α we can get

a virtually infinite particle contribution with respect to any other (α′, β′)-vacuum, including
the BD one.

3.5 The euclidean two point function

The two point function encodes enough information to construct any other Green function
from it (see app. C) and is therefore a very useful quantity. There are two ways to obtain
a mathematical expression for the two point function. The most direct is the substitution of
the mode expansion 3.39 into the definition,

G+(x, y) = 〈0 |φ(x)φ(y) | 0〉 . (3.54)

This approach is quite involved mathematically, but has the advantage, that the iε-prescription
is fixed automatically. This approach is discussed in detail in app. D and the final result for
the BD two point function is

G+(Zε) =
Hd−2

(4π)d/2
Γ (N−) Γ (N+)

Γ
(
d
2

) 2F1

(
N−, N+;

d

2
;
1 + Zε

2

)
, (3.55)
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where n =

√(
d−1

2

)2 − m2

H2 and N± := d−1
2 ± n. The iε-prescription is

Zε = Zε(x, y) := Z(x, y)− iε sgn(x, y), (3.56)

where sgn(x, y) := Θ(ηx−ηy)−Θ(ηy−ηx). The function Zε(x, y) carries the extra information
of the time ordering of x and y, but is only invariant under the time preserving part of the de
Sitter group SO(1, d).
The second approach is much more elegant. We can also find the two point function G+(x, y)
using the assumption of de Sitter invariance as an Ansatz. Looking at the result we obtained
the long way, eq. 3.55, we see that the two point function is only a function of the geodesic
distance (or equivalently, of Z), up to the iε-prescription. By assuming invariance under the
full de Sitter group, we can arrive at the result for the two point function much quicker and
also work in a coordinate independent framework. The disadvantage is, that we have to fix
the iε-prescription subsequently by hand. We will follow Allen [4] quite closely here. As we
have seen in app. C, for the case of a free, massive scalar field, generic Green functions satisfy

(� +m2)G(x, y) = 0. (3.57)

As we require de Sitter invariance of our vacuum, our two point function can not depend on
x and y directly, but must be a function of the de Sitter invariant geodesic distance, D(x, y),
or equivalently the function Z(x, y). Therefore we must express the covariant d’Alembert
operator in terms of Z(x, y),

�G(Z) =
d2G
dZ2

gµν∂µZ∂νZ +
dG
dZ

�Z. (3.58)

Furthermore, using the results from sec. 2 one easily finds that

gµν∂µZ∂νZ = −H2(1− Z2) and �Z = dH2Z. (3.59)

Using these results, we can rewrite eq. 3.57 and find a differential equation for the two point
function, [

(Z2 − 1)
d2

dZ2
+ dZ

d

dZ
+
m2

H2

]
G(Z) = 0, (3.60)

which due to its symmetry in Z → −Z admits a solution G(−Z), given G(Z) is a solution.
Substituting Z = 2z − 1, we obtain the differential equation for the hypergeometric function
[8], [

z(1− z) d2

dz2
+ d

(
1

2
− z
)

d

dZ
− m2

H2

]
G(Z) = 0. (3.61)

The general solutions to this equation are the hypergeometric functions 1,

G(Z) = C1 2F1

(
N−, N+;

d

2
;
1 + Z

2

)
+ C2 2F1

(
N−, N+;

d

2
;
1− Z

2

)
, (3.62)

1Compare with the differential equation of the hypergeometric differential equation [39],

z(z − 1)
d2F

dz2
+ (c− (a+ b+ 1)z)

dF

dz
− abF = 0,

to which the hypergeometric functions 2F1(a, b; c; z) provide solutions. For eq. 3.61,

a =
d− 1

2
± n, b =

d− 1

2
∓ n, c =

d

2
, n =

√(
d− 1

2

)2

− m2

H2
.

It does not matter which signs we take for a, b, as 2F1(a, b; c; z) = 2F1(b, a; c; z) [4].
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1
Z

Re[G+] Im[G+]

1
Z

Re[G+] Im[G+]

1
Z

Re[G+] Im[G+]

Figure 3.1: The real and imaginary parts of the BD Green function, the first term in eq. 3.62,
are shown here for different values of m2/H2: left m2/H2 = 1/4 such that n is purely real,
center m2/H2 = 9/4 such that n = 0, right m2/H2 = 24/4 such that n is purely imaginary.
One clearly sees the complicated behaviour at the coincidence point Z = 1. Additionally, we
can observe decaying behaviour in the left hand figure, where n is purely real and damped
oscillatory behaviour for the right hand figure, where n is purely imaginary.

1
Z

Re[G+] Im[G+]

Z

Re[G+] Im[G+]

1
Z

Re[G+] Im[G+]

Figure 3.2: The real and imaginary parts of the second term in eq. 3.62, which corresponds
to the BD two point function with Z → −Z are shown here for different values of m2/H2:
left m2/H2 = 1/4 such that n is purely real, centre m2/H2 = 9/4 such that n = 0, right
m2/H2 = 24/4 such that n is purely imaginary. The first thing that one clearly observes,
is that Im (G+) = 0 for any value of n. Additionally, the discontinuous behaviour at the
coincidence point Z = 1, has disappeared. The reason for this becomes clear by looking at the
defining series expansion of the hypergeometric function, for which 2F1(a, b, c; z) ∼

∑∞
s=0

zs

s!
[39]. For this function we have z = 0 at the coincidence limit. Additionally, we can again
observe damped oscillatory behaviour for the right hand figure, where n is purely imaginary.

where C1/2 are some complex coefficients. The hypergeometric function 2F1(a, b, c; z) has poles
at z = 0, 1,∞ and a branch cut from z = 1 to z = ∞ along the real axis [39]. Therefore,
the first term in eq. 3.62 has a pole at null separation of x and y and the second term has a
pole at null separation of x and ȳ. The behaviour of the first term (including normalisation),
which corresponds to the BD solution, is shown in fig. 3.1. The second term (including
normalisation) is investigated in fig. 3.2.
Since the results we obtained for the Green function depends only on the geodesic distance,
this expression holds equally well in global de Sitter spacetime, where the coordinates cover
the complete manifold. In the global patch, the BD vacuum is referred to as the euclidean
vacuum, due to its connection to the d-sphere for analytically continued time. The Euclidean
vacuum will be denoted by

∣∣ 0〉, equivalently to the BD vacuum. Consequently, the Green
function in the global patch is usually referred to as the euclidean Green function. One defines
the euclidean Green function as the solution, which has only one singularity when x is on the
light cone of y [4]. The normalisation coefficient C1 can be determined by requiring the same
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singularity behaviour as in Minkowski space in the UV-limit, Z → 1. For the euclidean Green
function we therefore obtain [8]

GE(Z) =
Hd−2

(4π)d/2
Γ (N−) Γ (N+)

Γ
(
d
2

) 2F1

(
N−, N+;

d

2
;
1 + Z

2

)
. (3.63)

From fig. 3.1 we see the different behaviour for different values of m2/H2. The case where
n is real and therefore

(
d−1

2

)2
> m2

H2 is known as the complementary series. Here we observe
a decaying behaviour of the Green function. The second case, where n is imaginary and
therefore

(
d−1

2

)2
< m2

H2 is known as the principle series. Here we observe damped oscillatory
behaviour of the Green function.
Now we can use this result to compute the two point function and the other related Green
functions by introducing the correct pole structure via the iε-prescription. For the two point
function we use the same iε-prescription as above

G+(x, y) = G+(Zε) = GE(Z − iε sgn(x, y))

=
Hd−2

(4π)d/2
Γ (N+) Γ (N−)

Γ
(
d
2

) 2F1

(
N−, N+;

d

2
;
1 + Zε

2

)
,

(3.64)

which then completely agrees with our previous result in eq. 3.55. Since we have introduced
explicit time ordering through the iε-prescription, the two point function G+(Zε) is generally
only invariant under the time preserving subgroup SO(1, d) [18].
As a further example, the euclidean Feynman Green function can easily be constructed from
its definition in eq. C.14 and can be expressed as

GF (x, y) = GE(Z − iε). (3.65)

One very interesting case to consider is the conformally coupled, massless case where the
effective mass (including the ξR coupling term in the action) is

m2 − ξR =
d(d− 2)

4
H2 and n =

1

2
. (3.66)

In this case the euclidean two point function becomes

G+(Zε) =
Hd−2

(4π)d/2
Γ

(
d

2
− 1

)(
2

1− Zε

) d
2
−1

. (3.67)

For d = 4 this further simplifies to

G+(Zε) =
H2

8π2

1

1− Zε
. (3.68)

Here the pole structure is directly visible, which allows us to easily compare to the flat space
case. Now we can clearly see the pole position at Z = 1, where x and y have lightlike
separation.
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3.6 The (α, β)-two point function

Having constructed the euclidean two point function we can ask again, what if we had chosen
any other of the class of (α, β)-modes? Since two potentially different (α, β)-modes can enter
in the two point function, this gives us a four parameter freedom.
We can use eq. 3.45 and eq. 3.46 to relate the two different operators a(α,β)

k and a(α′,β′)
k . One

finds,

a
(α,β)
k =(coshα coshα′ − sinhα sinhα′ei(β−β

′)) a
(α′,β′)
k

+ (coshα sinhα′eiβ
′ − sinhα coshα′eiβ) a

(α′,β′),†
k

=:γa
(α′,β′)
k + δa

(α′,β′)†
k .

(3.69)

Now we want to calculate the general two point function for two different vacua [7],

G
(α,β),(α′,β′)
+ (x, y) =

〈
0(α,β) |φ(x)φ(y) | 0(α′,β′)

〉
〈
0(α,β) | 0(α′,β′)

〉 . (3.70)

Now we substitute the mode expansion from eq. 3.43, in terms of the modes, corresponding
to the respective vacua

G
(α,β),(α′,β′)
+ (x, y) =

=
1

2

∫
d̄d−1k d̄d−1q

〈
0(α,β)

∣∣∣ a(α,β)
k a

(α′,β′)†
q

∣∣∣ 0(α′,β′)
〉

〈
0(α,β) | 0(α′,β′)

〉 f
(α,β)∗
k (x)f

(α′,β′)
q (y).

(3.71)

An expression for the matrix element can be found using the conjugate of eq. 3.69 [7],〈
0(α,β)

∣∣∣ a(α,β)
k a

(α′,β′),†
q

∣∣∣ 0(α′,β′)
〉

〈
0(α,β) | 0(α′,β′)

〉 =
1

γ∗
δd−1(k − q). (3.72)

Using this and the Bogoliubov transformation to the euclidean modes in eq. 3.41, we can write
the general two point function in terms of a superposition of euclidean two point functions,
eq. 3.55,

G
(α,β),(α′,β′)
+ (x, y) =

1

γ∗
[ coshα coshα′G+(x, y) + sinhα sinhα′e−i(β−β

′)G+(x̄, ȳ)

+ coshα sinhα′eiβ
′
G+(x, ȳ) + sinhα coshα′e−iβG+(x̄, y)],

γ∗ = coshα coshα′ − sinhα sinhα′e−i(β−β
′),

(3.73)

where we made use of the property in eq. 3.42. It is easily seen that from G
(α,β),(α′,β′)
+ one

can obtain the euclidean two point function G+, if either α or α′ is set to zero. Using the
property Z(x̄, y) = −Z(x, y) and Z(x, ȳ) = −Z(x, y), we can rewrite the above expression in
terms of Z

G
(α,β),(α′,β′)
+ (Zε) =

1

γ∗
[ coshα coshα′G+(Zε) + sinhα sinhα′e−i(β−β

′)G+(Z−ε)

+ coshα sinhα′eiβ
′
G+(−Zε̄) + sinhα coshα′e−iβG+(−Z−ε̄)],

γ∗ = coshα coshα′ − sinhα sinhα′e−i(β−β
′).

(3.74)
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Here the notation is the following, {±}Z±ε̄ = {±}(Z ∓ iε sgn(x̄, y)), where

sgn(x̄, y) = − sgn(x, ȳ) = Θ(−ηx − ηy)−Θ(ηx + ηy), (3.75)

as under antipodal transformations ηx → −ηx. Note also that sgn(x̄, y) is symmetric under
exchange of ηx and ηy.
Usually we take expectation values with respect to the same vacuum. So let us set α′ = α

and β′ = β and rename G(α,β),(α,β)
+ =: G

(α,β)
+ . From eq. 3.73 and eq. 3.74 we find that γ∗ = 1

and that

G
(α,β)
+ (x, y) = cosh2 αG+(x, y) + sinh2 αG+(x̄, ȳ)

+ coshα sinhα
(
eiβG+(x, ȳ) + e−iβG+(x̄, y)

)
= cosh2 αG+(Zε) + sinh2 αG+(Z−ε)

+ coshα sinhα
(
eiβG+(−Zε̄) + e−iβG+(−Z−ε̄)

)
.

(3.76)

Let us now check what happens under time reversal. Time reversal and the antipodal transfor-
mation are both elements of OT (1, d), hence we can just preform an antipodal transformation
under which,

G
(α,β)
+ (T{x}, T{y}) =G

(α,β)
+ (x̄, ȳ)

= cosh2 αG+(x̄, ȳ) + sinh2 αG+(x, y)

+ coshα sinhα
(
eiβG+(x̄, y) + e−iβG+(x, ȳ)

)
= cosh2 αG+(y, x) + sinh2 αG+(ȳ, x̄)

+ coshα sinhα
(
eiβG+(ȳ, x) + e−iβG+(y, x̄)

)
,

(3.77)

where we denote time reversal by T{.} and have made use of the property

G+(x̄, ȳ) = G+(y, x), or T{Zε} = Z−ε. (3.78)

Therefore we see, that the two point function is only time reversal invariant in its general form
if we set β = 0, but its arguments are reversed. Setting β = 0 we find

G
(α,0)
+ (T{x}, T{y}) = G

(α,0)
+ (T{Zε}) = G

(α,0)
+ (Z−ε) = G

(α,0)
+ (y, x). (3.79)

We have seen, that a frequency independent Bogoliubov transformation leaving orthogonality
of the modes invariant leads to de Sitter invariance under the time preserving group SO(1, d).
We can fix the value of α (and β) by matching out solution onto the flat spacetime theory
in the UV limit, leading to the euclidean or BD vacuum, as we did above. This is physically
motivated and fixes the value of α to zero, but we still have to regard the other (α, β)-vacua
as physically equivalent.

3.7 Green functions and de Sitter invariance

Now the question arises, if the two point functions in the new family of (α, β)-vacuum states are
still de Sitter invariant. Consider the mode expansion of the commutator and anticommutator
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two point functions after the transformation

iG(α,β)(x, y) =
〈

0(α,β)
∣∣∣ [φ(α,β)(x), φ(α,β)(y)

] ∣∣∣ 0(α,β)
〉

=

∫
d̄d−1k

[
f

(α,β)
k

∗
(x) f

(α,β)
k (y)− f (α,β)

k

∗
(y) f

(α,β)
k (x)

]
,

G
(1)
(α,β)(x, y) =

〈
0(α,β)

∣∣∣ {φ(α,β)(x), φ(α,β)(y)
} ∣∣∣ 0(α,β)

〉
=

∫
d̄d−1k

[
f

(α,β)
k

∗
(x) f

(α,β)
k (y) + f

(α,β)
k

∗
(y) f

(α,β)
k (x)

]
.

(3.80)

Now substituting eq. 3.41 for the mode functions f (α,β)
k we obtain

iG(α,β)(x, y) =(cosh2 α− sinh2 α)

∫
d̄d−1k [f∗k(x)fk(y)− fk(x)f∗k(y)]

=

∫
d̄d−1k [f∗k(x)fk(y)− fk(x)f∗k(y)]

(3.81)

for the commutator and

G
(1)
(α,β)(x, y) = cosh(2α)

∫
d̄d−1k [f∗k(x)fk(y) + fk(x)f∗k(y)]

+ sinh(2α) cosβ

∫
d̄d−1k [f∗k(x)f∗k(y) + fk(x)fk(y)]

+ i sinh(2α) sinβ

∫
d̄d−1k [fk(x)fk(y)− f∗k(x)f∗k(y)]

(3.82)

for the anticommutator. Using the property of the euclidean mode functions given by eq.
3.42, we can write the Bogoliubov transformed Green function, G(1)

(α,β)(x, y) in terms of the
euclidean two point functions

iG(x, y) = iG(0,0)(x, y) = 〈0 | [φ(x), φ(y)] | 0〉 = G+(x, y)−G+(y, x),

G(1)(x, y) = G
(1)
(0,0)(x, y) = 〈0 | {φ(x), φ(y)} | 0〉 = G+(x, y) +G+(y, x).

(3.83)

G(1)(x, y) and similarly G(x, y) can be expressed through G+(x, y) and G+(y, x). They there-
fore inherit invariance under the proper de Sitter group from the two point function. Further-
more, under time reversal,

iG(T{x}, T{y}) = −iG(x, y),

G(1)(T{x}, T{y}) = G(1)(x, y),
(3.84)

the commutator changes sign and the anticommutator remains completely invariant. The
euclidean anticommutator two point function is therefore invariant under the full de Sitter
group [4]. The commutator two point function

iG(α,β)(x, y) = iG(x, y), (3.85)

is found to be independent of the vacuum chosen. Furthermore due to the general relation to
advanced and retarded Green functions,

GA(x, y) = θ(ηy − ηx)G(x, y) and GR(x, y) = −θ(ηx − ηy)G(x, y), (3.86)
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are also independent of the choice of vacuum. For the symmetric two point function we find
2

G
(1)
(α,β)(x, y) = cosh(2α)G(1)(x, y) + sinh(2α)

[
cosβ G(1)(x̄, y)− sinβ G(x̄, y)

]
. (3.87)

Let us now consider what happens under time reversal. From our discussion in the previous
section leading to eq. 3.79, we already know that β 6= 0 leads to a violation of time reversal
invariance. Also from eq. 3.79 we know that under time reversal the arguments of the
euclidean two point function simply flip. Therefore the sign of the commutator two point
function changes under time reversal and we have

iG(α,β)(T{x}, T{y}) = −iG(α,β)(x, y),

G
(1)
(α,β)(T{x}, T{y}) = G

(1)
(α,−β)(x, y),

(3.88)

which tells us that if we set β = 0, the anticommutator two point function remains invariant
under the full de Sitter group.
Recalling the relations of the various Green functions described in app. C, the Feynman
Green’s function can be expressed as

iG
(α,β)
F (x, y) =

1

2
G

(1)
(α,β)(x, y) +

1

2
sgn(x, y) iG(α,β)(x, y). (3.89)

Substituting the above results, the Feynman Green’s function becomes

iG
(α,β)
F (x, y) = iGF (x, y) +

1

2

[
G

(1)
(α,β)(x, y)−G(1)(x, y)

]
, (3.90)

where an additional term appears with respect to the euclidean case. Under time reversal,

iG
(α,β)
F (T{x}, T{y}) = iGF (x, y) +

1

2

[
G

(1)
(α,−β)(x, y)−G(1)(x, y)

]
, (3.91)

we see that in addition to the anticommutator, also the Feynman Green function is time
reversal invariant upon setting β = 0 and therefore remains invariant under O(1, d).
We can now do a simple consistency check to confirm what we have discovered in the previous
section. In eq. 3.85 we have found that the commutator Green function is independent of the
chosen vacuum. This can be easily checked by constructing the commutator from eq. 3.76,

iG(α,β),(α,β)(x, y) = G
(α,β),(α,β)
+ (x, y)−G(α,β),(α,β)

+ (y, x). (3.92)

Now we can use the above properties to evaluate each term separately,

G+(x, y)−G+(y, x) = iG(x, y),

G+(x̄, y)−G+(ȳ, x) = G+(x̄, y)−G+(x̄, y) = 0,

G+(x, ȳ)−G+(y, x̄) = G+(x, ȳ)−G+(x, ȳ) = 0,

G+(x̄, ȳ)−G+(ȳ, x̄) = − [G+(x, y)−G+(x, y)] = −iG(x, y).

(3.93)

2 Allen [4] argues that, G(x, y) can not be a function of Z(x, y) as the commutator two point function is
antisymmetric in its arguments, G(x, y) = −G(y, x), but Z(x, y) is symmetric, Z(x, y) = Z(y, x). Therefore
he concludes, that we must set β = 0 to maintain de Sitter invariance. If we neglect the iε-prescription, this
argument holds and G(x, y) = 0 in fact. We only get a non-vanishing result for timelike separated points,
where Z > 1, if we take the iε-prescription into account. But this result is then invariant under the proper de
Sitter group, similarly to the two point function.
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Hence we see that the second and third terms in the difference of two point functions vanish
and we are left with

iG(α,β),(α,β)(x, y) = iG(x, y), (3.94)

as anticipated and the commutator two point function is indeed independent of the vacuum
choice.
In summary, starting from the euclidean vacuum state, we have identified a two real parameter
family of symmetric and antisymmetric two point functions which are invariant under the time
direction preserving, connected de Sitter group SO(1, d). Additionally, for β = 0 our resulting
anticommutator and Feynman two point functions are also time reversal invariant and hence
the only two Green functions which are invariant under the full de Sitter group O(1, d) [4, 18].
The (α, 0)-Bogoliubov transformations defines a one parameter set known as α-vacua.
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Chapter 4

The energy-momentum tensor of a
quantised scalar field

In this section our main goal will be to derive a regularised closed form expression for the quan-
tum expectation value of the stress-energy or energy-momentum tensor (EMT) of a scalar field
in the expanding Poincaré patch of de Sitter space. The motivation for this is to investigate
how the quantum nature of our field can affect the geometry of the spacetime. Recall that de
Sitter space is a solution to the Einstein equation for a universe dominated by the cosmologi-
cal constant only. So any matter contribution will necessarily affect the spacetime unless it is
negligibly small.
We will start by introducing the formalism of the effective action and the main ideas of semi-
classical gravity in sec. 4.1 [1, 22, 23] and sec. 4.2 [14, 15, 24], respectively. We will see that
the effective action is a generally very useful quantity, but suffers from UV divergences when
computed directly. To regularise the effective action we will spend some time in sec. 4.3 [14,
15, 22, 25–27] identifying these divergences and removing them via dimensional regularisation.
One result that we will discover on the way is that the quantum EMT loses its traceless prop-
erty in the conformally invariant case, making it fundamentally different to the classical case.
This is known as conformal or trace anomaly, which is discussed in sec. 4.4 [15].
After all this work and the slight detours we can use the obtained results to derive a closed
form expression for the EMT in the BD case in sec. 4.5 [10, 15, 28]. We analyse the result in
sec. 4.6 in terms of the semi-classical Einstein equation. Finally, in sec. 4.7 we generalize the
result for the BD EMT to the case of general (α, β)-vacua.

4.1 The effective action

Consider a system with action S[ϕ, J, gµν ] = S[ϕ, gµν ]+
∫
ddx
√
|g|Jϕ, where S[ϕ, gµν ] is some

action of a scalar field ϕ(x) and J(x) represents an external source coupled to this field. In
the path integral formulation,

Z[J, gµν ] =

∫ ϕ(xf )=ϕ(tf ,xf )

ϕ(xi)=ϕ(ti,xi)
DϕeiS[ϕ,J,gµν ] =: eiW [J,gµν ], (4.1)

where ti and tf are some arbitrary initial an final times, respectively. In the absence of a
source particle production will be absent and

Z[0, gµν ] =
〈
ϕf |ϕi

〉
=
〈
0f | 0i

〉
, (4.2)
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representing the overlap of final and initial vacua respectively. The choice of what “initial”
and “final” represent here, will determine the vacuum choice. This will be our normalisation
condition.
We can decompose the scalar field into background and fluctuation fields ϕ = φ + χ, respec-
tively [22]. Then we can do a saddle point approximation for the background field and expand
the action in the fluctuation field,

S[ϕ, gµν ] =S[φ, gµν ] +

∫
ddx
√
|g(x)|J(x)φ(x)

+
1

2

∫
ddx ddy χ(x)

δ2S[φ, gµν ]

δφ(x)δφ(y)
χ(y) +O(χ3),

(4.3)

where the linear term in χ vanishes as the background field satisfies the equation of motion,

δ S[φ, gµν ]

δφ(x)
+
√
|g(x)|J(x) = 0. (4.4)

Preforming the Gaussian path integral over the second order fluctuation fields, we obtain

W [J, gµν ] = −i lnZ[J, gµν ] = S[φ, gµν ] +

∫
ddx
√
|g(x)|J(x)φ(x) +

i

2
ln detK, (4.5)

where K(x, y) :=
δ2S[φ,gµν ]
δφ(x)δφ(y) and the background field φ is fixed by its equation of motion. The

S[φ, gµν ] is just a constant term and can thus be ignored. The Lorentzian effective action
Γ[gµν ] equals W [0, gµν ], so

Γ[gµν ] = −i lnZ[0, gµν ] =
i

2
tr lnK, (4.6)

where we have used that ln detK = tr lnK.
Generally, in the case of a static universe a stable vacuum exists and

〈
0f | 0i

〉
=
〈
0 | 0

〉
= 1.

We have seen that this is generally not true in dynamically changing spacetimes. Particle
creation during the evolution of the universe is quantified by

∣∣〈0f | 0i〉∣∣2, where∣∣〈0f | 0i〉∣∣2 = ei(Γ[gµν ]−Γ[gµν ]∗) = e−2Im(Γ[gµν ]). (4.7)

Hence, the imaginary part of the effective action is a measure of this particle creation proba-
bility [22].
The equation of motion for the source J is〈

0f

∣∣∣ δ S[ϕ,J,gµν ]
δJ(x)

∣∣∣ 0i〉
J〈

0f | 0i
〉
J

:=
1

Z[J, gµν ]

∫
Dϕ δ S[ϕ, J, gµν ]

δJ(x)
eiS[ϕ,J,gµν ] =

=
1

i

δ

δJ(x)
lnZ[J, gµν ] =

δW [J, gµν ]

δJ(x)
= 0,

(4.8)

where
〈
0f | 0i

〉
J

= Z[J, gµν ], becomes a quantum expectation value, which can be computed
via the effective action.
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4.2 Semi-classical gravity

We want to consider the coupling of gravity to a scalar field without any attempt to quantize
gravity. In other words, we want to consider the interaction of a classical background with a
quantised system. To this end, we want to study the influence of a classical background on a
quantum system and vice versa the possible backreaction on the classical system due to the
quantum nature of the field. The goal of this section is to introduce the general formalism,
starting from the path integral approach.
The total action of the combined system is

S[φ, gµν ] = Sφ[φ, gµν ] + Sg[gµν ]. (4.9)

Sφ is generally referred to as the matter action for a scalar field φ, which in this case is the
action of our quantised scalar field, generalised to include curvature effects (and also possible
coupling terms like ∼ Rφ2). Sg is the gravitational action, which describes the purely classical
background. In the case of conventional general relativity the gravitational action is the
Einstein-Hilbert action [14, 24],

S(0)
g [gµν ] = − 1

16π

∫
ddx
√
|g| (R+ 2Λ) , (4.10)

such that the variation with respect to the metric gives

δ S
(0)
g

δgµν
= −

√
|g|

16π

(
Rµν −

1

2
gµνR− gµνΛ

)
, (4.11)

which left hand side of the Einstein equation.
By treating the metric as a classical background, the path integral can be written as∫

Dφ eiSφ[φ,gµν ]+iSg [gµν ] = eiΓ[gµν ]+iSg [gµν ], (4.12)

which defines the effective action in this case. Hence the equation of motion for the background
field becomes

δ Γ[gµν ]

δgµν
+
δ Sg[gµν ]

δgµν
= 0 (4.13)

For a matter action which is invariant under the generalisation to a curved background,
Sφ[φ, gµν ] = Sφ[φ], we obtain the Einstein equation for universe dominated by the cosmo-
logical constant, which was the definition of a de Sitter universe. But now we want to include
coupling to a scalar field. Since we want to use pure de Sitter spacetime as background, we
must assume that the quantum contribution remains so small that we can safely ignore back-
reaction. This is an important point and we will come back to this later.
The classical EMT is defined by

Tµν :=
2√
|g|

δ Sφ
δgµν

. (4.14)

For the case of quantum contributions, from eq. 4.13, we must consider the variation of the
effective action with respect to the metric

δ Γ[gµν ]

δgµν
=

〈
0f

∣∣∣ δ Sφδgµν

∣∣∣ 0i〉〈
0f | 0i

〉 =:

√
|g|
2
〈Tµν〉, (4.15)
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which is the definition of the quantum EMT. We can specify the vacuum choice through the
Green function chosen to construct the EMT.
Generally it is close to impossible to compute 〈Tµν〉 via the functional derivative of the effective
action as one would be required to know Γ[gµν ] for all possible gµν [15]. However it provides us
with basic understanding of the general formalism, which we will use in the following sections
to single out the UV divergences for the later regularisation of the EMT.
Putting everything together, we obtain the semi-classical Einstein equation for conventional
general relativity

Rµν −
1

2
gµνR− gµνΛ = 8π〈Tµν〉, (4.16)

which defines semi-classical gravity. This incorporates the anticipated idea, given a classical
background gµν , we have introduced a quantum field φ which in return has a backreaction
effect on the classical background [14].

4.3 The UV divergences of the effective action

Generally, when trying to construct the effective action one encounters UV divergences. To
obtain a meaningful result one needs to find a method of regularising the effective action to
remove these divergences. First, one needs to single out the divergent parts of the effective
action, Γdiv. Then one can introduce counter terms in the action of the theory to absorb
exactly these parts. If successful, one can safely subtract the divergent part of the effective
action from the full expression. The resulting regularised effective action will be

Γreg = Γ− Γdiv. (4.17)

By construction this will yield a finite result, but it will always be ambiguous up to finite
regularisation terms as these would just cause a different shift in the counter terms.
To obtain this result, one can take

Γ[gµν ] =
i

2
tr lnK = − i

2
tr lnG, (4.18)

where G is the Green function of the operator K, corresponding to the chosen boundary
conditions. From the obtained expression we can then subtract Γdiv, which will give a finite
result.
The probably easiest way to find the divergent parts of the expectation value of the EMT is
via the heat kernel method. Another way is to obtain an equivalent result via a short distance
expansion in terms of Riemann normal coordinates which is discussed in [15, 22]. The heat
kernel method is a useful method to calculate the right hand side of eq. 4.18. Although, one
must work in the euclidean signature, as we require a real, elliptic and self-adjoint differential
operator. To this end it is useful to consider a general operator,

K = � +m2 − ξR+ V (x), (4.19)

where m is the mass of our field, the ξR term is a coupling term of our field to the background
and V (x) is a general potential containing possible additional terms.
Let us now analytically continue η → iηE to the euclidean time. This then gives the ana-
lytically continued operator KE , which is real, elliptic and self-adjoint [22]. Let {

∣∣φλ〉} be a
complete basis of eigenstates of KE with eigenvalues {λ}, such that

KE

∣∣φλ〉 = λ
∣∣φλ〉. (4.20)
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The heat kernel is defined such that it satisfies

(∂τ +KE)h(τ) = 0, (4.21)

where the parameter τ is usually referred to as the proper time. The formal solution to the
above equation is

h(τ) = e−τKE , (4.22)

where we imposed the boundary condition h(0) = 1. Furthermore, we can expand this operator
in terms of its eigenfunctions as

h(τ) =
∑
λ

e−τλ
∣∣φλ〉〈φλ ∣∣. (4.23)

We can now use this to define the heat kernel in a coordinate basis,

h(x, y; τ) := 〈x |h(τ) | y〉 =
∑
λ

e−τλ
〈
x |φλ

〉〈
φλ | y

〉
=
∑
λ

e−τλφλ(x)φλ(y)∗, (4.24)

with boundary condition h(x, y; 0) = δd(x− y)/
√
|g|. The Feynman Green function is related

to the heat kernel by

iGF (x, y) =

∫ ∞
0

dτ h(x, y, τ), (4.25)

as can easily be seen by substituting eq. 4.24,

iGF (x, y) =
∑
λ

1

λ
φλ(x)φλ(y)∗, (4.26)

and by applying KE ,

KEiGF (x, y) =
〈
x
∣∣ [∑

λ

1

λ
KE

∣∣φλ〉〈φλ ∣∣
] ∣∣ y〉 =

〈
x | y

〉
=
δd(x− y)√
|g|

, (4.27)

where we have used that the eigenfunctions of KE form a complete set. The obtained result
is the differential equation for the inhomogeneous Green function, which is indeed satisfied by
the Feynman Green function.

4.3.1 The zeta function and the effective action

As a next step it is useful to define the euclidean zeta function [14],

ζE(s) =
∑
λ

λ−s, (4.28)

where the Lorentzian zeta function is given by ζ = −iζE . This definition is useful due to its
connection to the euclidean effective action via

ΓE [gµν ] =
i

2
ln detKE =

i

2

∑
λ

lnλ =
i

2

d ζE(s)

ds

∣∣∣
s=0

. (4.29)
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The ζ-function is related to the heat kernel by [14]

ζE(s) =
1

Γ(s)

∫ ∞
0

dττ s−1 trh(τ) =
1

Γ(s)

∫ ∞
0

dτ τ s−1

∫
ddx
√
|gE |h(x, x; τ), (4.30)

where
√
|gE | is the euclidean metric determinant. Pulling out the mass term of the differential

operator, K̃E := KE −m2 = �E − ξR+ V (x) we can write the heat kernel as

h(τ) = e−τm
2
e−τK̃E . (4.31)

The reason why this is useful is that it gives us control over the IR divergence.
In the coincidence limit we can expand the heat kernel for τ → 0, to find [25]

h(x, x; τ) =
1

(4πτ)d/2
e−τm

2
∑
n

τnan(x), (4.32)

where the coefficients an are functions containing powers of curvature terms, the potential
terms ξR + V (x) present in the differential operator and derivatives thereof. Alternatively,
one can also derive a series expansion of the heat kernel via metric perturbation, giving a
expansion in terms of curvature values. A discussion of this can be found in [14], where also
the equivalence to the proper time expansion in eq. 4.32 is shown up to n = 2.
Substituting the above expansion into eq. 4.30 and rearranging,

ζE(s) =
1

(4π)d/2Γ(s)

∫
ddx
√
|gE |

∑
n

an(x)

∫ ∞
0

dτe−τm
2
τ s−1τn−d/2, (4.33)

we observe that the τ integral diverges at the lower bound for terms up to n+ s = d/2. This
corresponds to a UV divergence of the theory. At the upper boundary of the integral we
should strictly speaking introduce an IR cutoff, as the expansion from eq. 4.32 is only valid
for sufficiently small τ . Alternatively, we can use the mass as a regulator and argue that it is
large enough to make the integrand vanish sufficiently quickly in the IR limit [25].
We can introduce a cutoff τUV as the lower bound of the τ integral in eq. 4.33,∫ ∞

τUV

dτe−τm
2
τ s−1τn−d/2 = md−2(n+s)Γ

(
n+ s− d

2
,m2τUV

)
, (4.34)

where Γ(s, a) =
∫∞
a dt ts−1e−t is the incomplete Gamma function. Using this result in 4.33

gives

ζE(s) =
1

(4π)d/2Γ(s)

∫
ddx
√
|gE |

∑
n

an(x)md−2(n+s)Γ

(
n+ s− d

2
,m2τUV

)
. (4.35)

Near s = 0 the gamma function has the expansion

1

Γ(s)
≈ s+O(s2). (4.36)

Using this, we find

d ζE(s)

ds

∣∣∣
s=0

=
1

(4π)d/2

∫
ddx
√
|gE |

∑
n

an(x)md−2n

×
[
Γ(n− d

2
,m2τUV ) +

1

Γ(s)

d

ds
Γ

(
n+ s− d

2
,m2τUV

) ∣∣∣∣
s=0

]
.

(4.37)
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As long as we keep the cutoff parameter, τUV , non-zero,

d

ds
Γ(n+ s− d

2
,m2τUV ) = Γ(n+ s− d

2
− 1,m2τUV ) (4.38)

is finite and the second term vanishes when one takes s = 0. Additionally, we can easily rotate
back from the euclidean to the Lorentzian time. One only needs to replace the euclidean
metric determinant with the Lorentzian one and recall that ζ = −iζE . Therefore we can
finally write down an expression for our Lorentzian effective action,

Γ[gµν ] =
1

2(4π)d/2

∫
ddx
√
|g|

∞∑
n=0

an(x)md−2nΓ

(
n− d

2
,m2τUV

)
. (4.39)

As the Γ-function diverges in the limit τUV → 0 for n − d/2 < 0, we can conclude that the
terms up to n = d/2 are divergent.

4.3.2 The divergent terms in the effective action

To investigate the behaviour of the singularities arising in the effective action and discuss
regularisation we must specify the number of dimensions we wish to consider in the end. We
will make the choice of the physically motivated d = 4 so that the divergent terms in the
effective action are n = 0, 1, 2. On the other hand, in the following expressions we will keep a
general d, in preparation for dimensional regularisation.
The divergent part of the effective action can thus be written as

Γdiv[gµν ] =
1

2(4π)d/2

(
m

µ

)d−4 ∫
ddx
√
|g|

2∑
n=0

an(x)m4−2nΓ

(
n− d

2
,m2τUV

)
, (4.40)

where we have introduced a mass scale µ to keep the effective action dimensionless [15, 22, 25].
The coefficients an can be found for example in [25]. For the case of our differential operator
K −m2 = �− ξR+ V (x),

a0 =1,

a1 =−
(

1

6
− ξ
)
R− V,

a2 =
1

180

(
RαβγδR

αβγδ −RαβRαβ
)

+
1

2

(
1

6
− ξ
)2

R2

+
1

6

(
1

5
− ξ
)
�R−

(
1

6
− ξ
)
RV − 1

6
�V +

1

2
V 2.

(4.41)

These coefficients can be derived recursively (see [26]) and the first coefficient a0 is fixed by
the boundary condition h(x, y; 0) = δd(x−y)/

√
|g|. One can immediately see that in the case

of conformal coupling in four dimensions, ξ = d−2
4(d−1) = 1

6 , the first term in a1 and two terms
in a2 drop out.
Now we want to turn to the discussion of regularising the effective action. We will show that
one can get rid of the divergent terms by dimensional regularisation, where we will introduce
corresponding counter terms to absorb the divergences. As we take the limit of τUV → 0, we
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can expand the gamma functions in the divergent part of the effective action around d = 4
[15],

lim
τUV→0

Γ

(
−d

2
,m2τUV

)
=

4

d(d− 2)

(
2

4− d
− γ
)

+O(d− 4),

lim
τUV→0

Γ

(
1− d

2
,m2τUV

)
=

2

2− d

(
2

4− d
− γ
)

+O(d− 4),

lim
τUV→0

Γ

(
2− d

2
,m2τUV

)
=

(
2

4− d
− γ
)

+O(d− 4),

(4.42)

where γ = 0.577 is the Euler constant. We substitute this into the effective action to obtain

Γdiv[gµν ] = − 1

2(4π)d/2

(
m

µ

)d−4 ∫
ddx
√
|g|
(

1

d− 4
+
γ

2

)[
4m4a0

d(d− 2)
+

2m2a1

2− d
+ a2

]
. (4.43)

This gives a closed form expression of the divergent terms in the effective action for d = 4.

4.3.3 Dimensional regularisation of the effective action

From the coefficients in eq. 4.41 one already sees that to absorb the divergences we must
introduce higher derivative terms into the gravitational action. Hence, we write the extension
of the Einstein-Hilbert action as [22],

Sg[gµν ] = − 1

16πG

∫
ddx
√
|g|
(
R+ 2Λ + aR2 + bRαβR

αβ + cRαβγδR
αβγδ

)
, (4.44)

where we have reintroduced Newtons gravitational constant G to highlight the regularisation.
Our goal is to show that the sum ΓRdiv+Sg is finite, where ΓRdiv includes the divergent curvature
terms (including the a0 term) of Γdiv. We can collect different curvature terms and combine
them with the bare parameters GB,ΛB, aB, bB, cB to to absorb the divergences. Then we are
left with the regularised and finite parameters G,Λ, a, b, c. Let us start by looking at the terms
independent of curvature parameters. We absorb the divergence in the cosmological constant
as

− 1

2(4π)d/2

(
m

µ

)d−4( 1

d− 4
+
γ

2

)
4m4

d(d− 2)
− 2ΛB

16πG
=

2Λ

16πG
. (4.45)

For the terms proportional to the Ricci scalar R, we absorb the divergence in the gravitational
constant as

1

2(4π)d/2

(
m

µ

)d−4( 1

d− 4
+
γ

2

)
2m2

2− d

(
1

6
− ξ
)
− 1

16πGB
= − 1

16πG
. (4.46)

The remaining terms in our modified gravitational action are higher derivative terms of the
metric, proportional to curvature parameters squared. The a2 term in the heat kernel proper
time expansion contains derivatives of the metric up to fourth order and we must regularize
by absorbing corresponding divergences in the parameters a, b, c as

− 1

2(4π)d/2

(
m

µ

)d−4( 1

d− 4
+
γ

2

)
1

2

(
1

6
− ξ
)2

− aB
16πG

= − aB
16πG

,

1

180

1

2(4π)d/2

(
m

µ

)d−4( 1

d− 4
+
γ

2

)
− bB

16πG
= − b

16πG
,

− 1

180

1

2(4π)d/2

(
m

µ

)d−4( 1

d− 4
+
γ

2

)
− cB

16πG
= − c

16πG
.

(4.47)
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The term proportional to �R in a2 is a total derivative and therefore only gives a boundary
contribution which we will ignore here.
The higher derivative terms, which we included for regularisation purposes will bring additions
to the gravitational part of the field equations 4.16, namely [15, 22, 27],

(1)Hµν =− 1√
|g|

δ

δgµν

∫
ddx
√
|g|R2

=
1

2
gµνR

2 − 2RRµν − 2gµν�R+ 2∇µ∇νR,

(2)Hµν =− 1√
|g|

δ

δgµν

∫
ddx
√
|g|RαβRαβ

=
1

2
gµνRαβR

αβ −�Rµν −
1

2
gµν�R+∇µ∇νR− 2RαβRαµβν

=2∇α∇νRµα −�Rµν −
1

2
gµν�R− 2RµαR

α
ν +

1

2
gµνRαβR

αβ,

Hµν =− 1√
|g|

δ

δgµν

∫
ddx
√
|g|RαβγδRαβγδ

=
1

2
gµνRαβγδR

αβγδ − 2RµαβγR
αβγ
ν − 4�Rµν

+ 2∇µ∇νR+ 4RµαR
α
ν − 4RαβRαµβν .

(4.48)

Not all of these terms are independent for d = 4. The generalised Gauss-Bonnet theorem [15,
22, 26] states that in four dimensions

δ

δgµν

∫
ddx
√
|g|
(
RαβγδR

αβγδ +R2 − 4RαβR
αβ
)

= 0. (4.49)

This imposes a relation between (1)Hµν ,
(2)Hµν and Hµν and lets us express

Hµν = −(1)Hµν + 4(2)Hµν . (4.50)

In return, this imposes the condition c = −a+4b upon the coefficients of the higher derivative
terms and we may freely choose c = 0.
Hence, we can write down an extended version of the semi-classical Einstein equation 4.16,

Gµν − gµνΛ = Rµν −
1

2
gµνR+ 8πG

(
a (1)Hµν + b (2)Hµν

)
− gµνΛ = 8πG〈Tµν〉, (4.51)

where the parameters Λ, G, a, b are free parameters of our theory. These gravitational higher
derivative terms may become dominant in regions of high curvature of our background. We
cannot make predictions above the Planck scale. So we always consider length scales way
above the Planck length, lp =

√
G~/c3 ' 1.62× 10−33 cm, and therefore regions of relatively

low curvature. As long as |R| �
∣∣R2
∣∣ holds eq. 4.51 is a valid approximation and we can

safely ignore even higher derivative terms. General relativity predicts experimental results to
an incredible accuracy without introducing (1)Hµν and (2)Hµν . So to keep consistency with
experiment, the new terms in our gravitational field equations must be of very small magnitude
compared to the original ones.
Next we should focus on the remaining terms, containing the potential V . Firstly, note
that in the case of a conformally coupled field the term proportional to RV in a2 (see eq.
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4.41) will drop out. The last two terms proportional to �V and V 2 must be regularised
corresponding to the different types of the possible potential terms. For additional curvature
terms a similar procedure to the one above must be used, where one introduces counter terms
in the gravitational action, Sg, to compensate for the potential terms. Constant terms in V
can be removed by redefining Λ/G, as in eq. 4.45.

4.4 The conformal anomaly

In this section we want to consider the case of a conformally invariant, i.e. scale invariant,
theory and the effects of the quantum nature on the EMT expectation value. We will see that
this leads to the well known conformal or trace anomaly, which has a wide range of effects in
semi-classical gravity and many implications on cosmology.
We have seen that the FLRW metric is conformally flat,

ds2 = a(η)(dη2 − δijdxidxj) = a(η)ηµνdx
µdxν . (4.52)

Especially, for the de Sitter metric in the Poincaré patch a(η) = (Hη)−2. For conformally
invariant theories the classical action, S[χ, gµν ], is assumed to be invariant under conformal
transformations

gµν(x)→ Ω2(x)gµν(x), (4.53)

i.e. one assumes scale invariance of the theory at each point. Under conformal transformations
the conformally coupled, massless equation of motion transforms as(

�− 1

4

d− 2

d− 1
R

)
φ→ Ω−

(d+2)
2

(
�− 1

4

d− 2

d− 1
R

)
φ (4.54)

and hence is invariant. The inclusion of a mass breaks conformal invariance, as one includes
a parameter of fixed energy scale [15].
For conformally invariant theories the trace of the EMT is given by [15],

T [gµν ] = Tµµ [gµν ] = − Ω√
|g|
δ S[χ,Ω2gµν ]

δΩ

∣∣∣∣
Ω=1

, (4.55)

from which it is immediately clear that T = Tµµ = 0 for a conformally invariant theory where
S[χ,Ω2gµν ] = S[χ, gµν ].
Let us now try to calculate the trace of the quantum expectation value of the EMT, T := 〈Tµµ 〉.
We can make use of the effective action expansion, eq. 4.39,

Γ[gµν ] =
1

2(4π)d/2

(
m

µ

)d−4 ∫
ddx
√
|g|

∞∑
n=0

an(x)m4−2nΓ

(
n− d

2
;m2τUV ,m

2τIR

)
, (4.56)

to extract the UV divergent part of the effective action. Here Γ(s; a, b) =
∫ b
a dt t

s−1e−t. Above,
in eq. 4.33, we used the non-zero mass as a regulator for the IR divergence of the effective
action. This argument is no longer valid in the limit m → 0 which is why we introduced an
IR cutoff, τIR.
Nonetheless, we can use the above expansion to learn about the UV divergence of the theory.



4.4 The conformal anomaly 43

In the d = 4 case, the terms n = 0, 1, 2 diverge. The n = 0, 1 terms vanish in the limit m→ 0
and therefore the only UV divergent term in the expansion is

Γdiv[gµν ] =
1

2(4π)d/2

(
m

µ

)d−4

Γ

(
2− d

2

) ∫
ddx
√
|g| a2(x). (4.57)

For a conformally coupled, ξ = 1
4
d−2
d−1 , massless scalar field the a2 coefficient in eq. 4.41,

becomes
a2 =

1

180

(
RαβγδR

αβγδ −RαβRαβ
)
. (4.58)

Here, we neglected two terms, the R2 term vanishes in the limit d → 4 due to the conformal
coupling (also respecting the singularity of the Γ-function) and the �R term is a total deriva-
tive and will therefore not contribute to the action [15]. One can write a2 in terms of the the
square of the Weyl tensor in d = 4,

U = CαβγδC
αβγδ = RαβγδR

αβγδ − 2RαβR
αβ + 1

3R
2 (4.59)

and the topological invariant quantity in eq. 4.49 [15],

W = RαβγδR
αβγδ +R2 − 4RαβR

αβ. (4.60)

Then one finds
a2 =

1

180

(
3

2
U − 1

2
W

)
. (4.61)

The point of doing this is that U and W (in d = 4) remain invariant under conformal trans-
formations and hence Γdiv is invariant [15].
The UV divergent part of the EMT trace is given by

Tdiv =
2√
|g(x)|

gµν
δ Γdiv[gµν ]

δgµν
. (4.62)

We can first calculate [15]

2√
|g(x)|

gµν
δ

δgµν

∫
ddx
√
|g| a2(x) =

1

90

(
(1)Hµ

µ − 3(2)Hµ
µ

)
= −(d− 4)

180

(
3

2
U + �R− 1

2
W

)
.

(4.63)

Hence, the UV divergent part of the EMT trace is given by

Tdiv = − 1

2(4π)d/2

(
m

µ

)d−4

Γ

(
2− d

2

)
(d− 4)

180

(
3

2
U + �R− 1

2
W

)
. (4.64)

We see that when taking d → 4 the divergence in the Γ-function is cancelled by the (d − 4)
factor. Making use of the expansion in 4.42, we find that

Tdiv =
1

16π2

1

180

(
3

2
U + �R− 1

2
W

)
=

1

16π2

1

180

(
RαβγδR

αβγδ −RαβRαβ + �R
) (4.65)
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which is independent of m and hence corresponds to the massless limit.
As Γ[gµν ] is conformally invariant in the massless, conformally coupled case, one expects that
for the total EMT, T = 0 [15]. Furthermore, given the above arguments, we find that the
regularised trace component,

Treg = T − TUV = −TUV , (4.66)

is non-zero. In pure dS4, the result reduces to

Treg =
1

16π2

1

180

R2

12
=

1

16π2

1

15
H4 (4.67)

where we have used the identities in eq. 2.20. Other regularisation methods equivalently
produce the trace anomaly [15]. For odd dimensions, the effective action in 4.39 is finite, and
hence there is no trace anomaly [15].
This is a generally unexpected result. From the classical EMT one expects a similar behaviour
of the quantum expectation value of the scalar field EMT. We expect this especially because
both the full and the UV divergent effective actions remain conformally invariant in d = 4.
This feature is known as the trace anomaly and stems from the non-conformal nature of TUV
away from d = 4, due to the divergent part of the effective action. This result is a good example
how the quantum nature can have effects also on the classical level and lead to unexpected
results.

4.5 The Bunch-Davies energy-momentum tensor

Finally, we are in the position to calculate the anticipated quantum expectation value of the
EMT. We will start by calculating the in-in expectation value of the EMT and hence will be
using the euclidean two point function in this section. Once again, let us consider a scalar
field with mass m coupled to gravity with the action

S[φ, gµν ] =
1

2

∫
ddx
√
|g|
[
gµν∇µφ(x)∇νφ(x)−m2φ2(x) + ξRφ2(x)

]
. (4.68)

From our definition of the expectation value of the EMT in eq. 4.15 we find that the quantity
we wish to calculate is [15]

〈Tµν〉 =(1− 2ξ)〈∇µφ∇νφ〉+

(
2ξ − 1

2

)
gµνg

αβ〈∇αφ∇βφ〉 − 2ξ〈φ∇µ∇νφ〉+
2

d
ξgµν〈φ�φ〉

+ ξ

(
Rµν − 1

2Rgµν +
2(d− 1)

d
ξRgµν

)
〈φ2〉+ 2

(
1

4
−
(

1− 1

d

)
ξ

)
m2gµν〈φ2〉,

(4.69)

where the equation of motion (� + m2 − ξR)φ = 0 was used for simplification. The two
point function in the coincidence limit is invariant under the full de Sitter group, as the iε-
prescription vanishes. This can alternatively be seen from the fact that the two point function
equals the anticommutator and the Feynman Green function

〈φ2(x)〉 ≡ G+(x, x) = G(1)(x, x) = GF (x, x) (4.70)
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in the coincidence limit and from sec. 3.7 we know that the latter two are invariant under
O(1, d).
We can make use of one very interesting property of maximally symmetric spaces. If we
require that our resulting EMT is symmetric and invariant under the full de Sitter group, the
only tensor satisfying these properties is the metric tensor (see F) [10]. Hence, the EMT of
our scalar field must be proportional to the metric tensor

〈Tµν〉 =
T

d
gµν , (4.71)

where T is the trace of the EMT. Taking the trace of eq. 4.69, we find

T = 2(d− 1)
(
ξ − 1

4
d−2
d−1

)
�G+(x, x) +m2G+(x, x), (4.72)

where we have used the equation of motion and gαβ〈∇αφ∇βφ〉 = 1
2�〈φ

2〉 − 〈φ�φ〉. The
EMT is directly proportional to the two point function G+(x, x) in the coincidence limit and
derivatives thereof. Therefore, the only thing left to do is to find the regularised form of
G+(x, x). To this end, let us take the coincidence limit of the euclidean two point function in
eq. 3.63 [15, 28, 39],

G+(x, x) =
Hd−2

(4π)d/2
Γ
(
d−1

2 + n
)

Γ
(
d−1

2 − n
)

Γ
(

1
2 + n

)
Γ
(

1
2 − n

) Γ
(
1− d

2

)
. (4.73)

We see that this expression is independent of x and therefore �G+(x, x) = 0 this simplifies
our expression for the EMT to

T = m2〈φ2〉. (4.74)

This expression is divergent for d = 4. From our calculation of the proper time expansion of
the heat kernel we can extract the divergent parts of our two point function in the coincidence
limit using eqs. 4.25, 4.30 and 4.35. To remove the divergences we must expand eq. 4.73
around d = 4 and then subtract terms from the proper time expansion up to the correct order
[15]. From eqs. 4.25 and 4.30 we find that

ζ(1) =

∫
ddx
√
|g|iGF (x, x) =

∫
ddx
√
|g|iG+(x, x). (4.75)

Then from eq. 4.35 we find that

G+(x, x) =
1

(4π)d/2

∑
n

an(x)md−2(n+1)Γ
(
n+ 1− d

2 ,m
2τUV

)
. (4.76)

The terms to be subtracted from our divergent result should be up to the same order in the
proper time expansion as we used to renormalise the effective action. Otherwise we will again
obtain a divergence when trying to calculate the effective action with the obtained result [15].
Hence, in analogy to the previous section we can extract the terms up to second order

Gdiv+ (x, x) =
md−2

(4π)d/2

[
a0(x)Γ

(
1− d

2 ,m
2τUV

)
+
a1(x)

m2
Γ
(
2− d

2 ,m
2τUV

)
+
a2(x)

m4
Γ
(
3− d

2 ,m
2τUV

) ]
.

(4.77)
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The expansion parameters a0, a1, a2 are given in eqs. 4.41 and simplify greatly in de Sitter
space. Setting V = 0 in eqs. 4.41 and using the results from sec. 2,

a0 =1,

a1 =−
(

1

6
− ξ
)
R = −d(d− 1)

(
1

6
+ ξ

)
H2,

a2 =
1

180

(
RαβγδR

αβγδ −RαβRαβ
)

+
1

2

(
1

6
− ξ
)2

R2 + 1
6

(
1

5
− ξ
)
�R

=

[
1

2

(
1

6
− ξ
)2

− 1

180

d− 3

d(d− 1)

]
d2(d− 1)2H4.

(4.78)

Expanding eq. 4.73 around d = 4, we find

G+(x, x) =
H2

16π2

[(
m2

H2
− 12

(
1

6
− ξ
))

×
(

2

d− 4
+ ψ

(
3
2 − n

)
+ ψ

(
n+ 3

2

)
+ ln

(
H2

4π

)
+ γ − 1

)
+ 24ξ′ + 14ξ − 3

]
+O(d− 4)

(4.79)

where γ = 0.577 is the Euler constant and ψ(z) = Γ′(z)/Γ(z) is the digamma function,
R = −12H2 and ξ′ = d ξ

dd . Similarly, expanding Gdiv+ and using the results in eqs. 4.42 we find

Gdiv+ (x, x) =
H2

16π2

[(
m2

H2
− 12

(
1

6
− ξ
))(

2

d− 4
+ ln

(
m2

4π

)
+ γ − 1

)
− 26

(
1

6
− ξ
)

+ 24ξ′
]
.

(4.80)

Now we can subtract the divergent parts of the two point function from the full expression,
leading to the regularised and finite result

G+(x, x)−Gdiv+ (x, x) =
H2

16π2

[(
m2

H2
− 12

(
1

6
− ξ
))

×
(
ψ
(

3
2 − n

)
+ ψ

(
3
2 + n

)
− ln

(
m2

H2

)
− 1

)
+
m2

H2
− 2

3
− a2

m2H2

]
.

(4.81)

In combination with the above results in eqs. 4.71, 4.74 and 4.78 we find a closed form
expression for the regularised in-in EMT expectation value of a massive scalar field in dS4,

〈Tµν〉 = −gµν
m2H2

64π2

[(
12

(
1

6
− ξ
)
− m2

H2

)(
ψ
(

3
2 − n

)
+ ψ

(
3
2 + n

)
− ln

(
m2

H2

))
+

2

3
− 12

(
1

6
− ξ
)

+ 72

((
1

6
− ξ
)2

− 1

1080

)
H2

m2

]
,

(4.82)
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which is in agreement with [15] and [28]. From this we can also extract values for energy
density

ρ = 〈T 00〉 =
T

d
. (4.83)

In the conformally coupled case we have ξ = 1
6 and the result simplifies to

〈Tµν〉 = −gµν
m2H2

64π2

[
− m2

H2

(
ψ
(

3
2 − n

)
+ ψ

(
3
2 + n

)
− ln

(
m2

H2

))
+

2

3
− 1

15

H2

m2

]
. (4.84)

Furthermore, in the massless limit we have

〈Tµν〉 = gµν
9H4

8π2

[
1

2

(
1

6
− ξ
)

+
1

1080
−
(

1

6
− ξ
)2
]
. (4.85)

Lastly, in the massless and conformally coupled case

〈Tµν〉 = gµν
1

64π2

H4

15
= −gµν

a2

64π2
, (4.86)

reproducing the trace anomaly as expected [15].

4.6 The contribution to the Einstein equation

Now we want to turn to analysing our result of eq. 4.82 in the light of the semi-classical
Einstein equation. We have already discussed that adding a matter contribution to pure de
Sitter space will result in inconsistencies as we do not have any freedom in the metric to take
the backreaction of the massive field into account. Nonetheless, we have seen that the EMT
contribution is proportional to the metric and can therefore be viewed as a simple screening
of the cosmological constant.
Let us consider again the semi-classical Einstein equation from eq. 4.16 or 4.51,

Gµν = gµνΛ + 8π〈Tµν〉. (4.87)

We see that indeed the backreaction on the spacetime is such that it can oppose or enhance
the cosmological constant depending on the overall sign of the EMT.
Before we analyse eq. 4.82 let us consider the results for a classical scalar field for comparison.
The EMT of a classical scalar field φcl is [1]

Tµνcl = ∂µφcl∂
νφcl − gµν (∂αφcl∂αφcl + V (φcl)) , (4.88)

where V (φcl) is an arbitrary potential. Let us for simplicity assume that the field only depends
on time, i.e. φcl(x) = φcl(η). Then the contribution to the energy density is

T 00
cl =

1

2
∂0φcl∂

0φcl − g00V (φcl). (4.89)

Therefore, as the potential increases in the positive direction, we get a growing negative
contribution to the energy density and hence oppose the action of the cosmological constant.
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In the above section we have used the action in eq. 4.68 to obtain the EMT. Considering the
same action, but for a classical field, the potential is (see eq. 3.15)

V (φcl) =
1

η2

(
m2

H2
+ 12

(
ξ − 1

6

))
φ2
cl. (4.90)

So only for small values ofm2 and values of ξ below the conformal coupling, where the potential
energy is small, we should get a positive contribution to the energy density.
To check our expectations, let us take large and small mass limits of eq. 4.82. In the large
mass limit m2

H2 � 1 we have

ψ
(

3
2 − n

)
+ ψ

(
3
2 + n

)
− ln

(
m2

H2

)
= ln

(
H2

m2

)
+ ln

(
m2

H2

)
− 4

3

H2

m2
+O

(
H3

m3

)
= −4

3

H2

m2
+O

(
H3

m3

) (4.91)

so that we find

〈T 00〉 ≈ −g00m
2H2

64π2
ξ < 0, (4.92)

which is strictly negative. This definitely confirms our expectations. In this case the potential
is large and strictly positive and hence the contribution to the EMT is strictly negative.
In the limit of small mass m2

H2 � 1, we can approximate the EMT as

〈Tµν〉 = gµν
9H4

8π2

[
1

2

(
1

6
− ξ
)

+
1

1080
−
(

1

6
− ξ
)2
]
. (4.93)

Therefore, depending on the coupling parameter, we have

〈T 00〉 > 0 for 0 < ξ <
1

180

(√
2055− 15

)
≈ 0.1685,

〈T 00〉 < 0 for
1

180

(√
2055− 15

)
< ξ.

(4.94)

So the sign of the contribution flips just below the value for conformal coupling, ξ ≈ 0.1666.
For a value below the conformal coupling, the potential can actually become negative if the
mass is sufficiently small. Then even the potential gives a positive contribution to the energy
density. On the other hand, once we take the coupling to be larger than the conformal value
the potential grows and we also get a growing negative contribution to the energy density. So
this is also in agreement with our expectation.

4.7 The energy-momentum tensor for general α-vacua

Up to now we have only calculated the BD contribution to the EMT. The obtained result
in eq. 4.82 is not the most general as we have made use of the boundary conditions leading
to the in-in expectation value. In sec. 3.7 we found that out of the class of (α, β)-vacua we
obtain O(1, d) invariance of the anticommutator and Feynman two point functions only if we
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set β = 0 and restrict to the one parameter class of α-vacua 1. We also used the assumption
of full de Sitter invariance to simplify the EMT to its trace in eq. 4.71. Therefore let us also
restrict to only the class of α-vacua in this section and construct the most general EMT in
this case.
Consider the result, eq. 3.74, in the coincidence limit 2,

G
(α,0),(α′,0)
+ (1) =

1

γ∗

[ (
coshα coshα′ + sinhα sinhα′

)
G+(1)

+
(
coshα sinhα′ + sinhα coshα′

)
GE+(−1)

]
,

γ∗ = coshα coshα′ − sinhα sinhα′.

(4.96)

As discussed below eq. 3.74, the term proportional to G+(−1) is just a constant and we can
write

G
(α,0),(α′,0)
+ (1) = AGE+(1) +B,

A =
coshα coshα′ + sinhα sinhα′

coshα coshα′ − sinhα sinhα′
,

B = A
H2

(4π)2
Γ (N−) Γ (N−)

(4.97)

Taking into account eq. 4.74, we can immediately see that the general dS4 EMT is

〈Tµν〉(α,0),(α′,0) = A

[
〈Tµν〉+

m2

4

H2

(4π)2
Γ (N−) Γ (N−) gµν

]
, (4.98)

where 〈Tµν〉 is given by eq. 4.82. Hence upon Bogoliubov transformation the EMT only scaled
by a certain value and shifted by a constant depending on α, α′ and a constant coefficient. Note
that B is strictly positive and therefore the additional term always enhances the cosmological
constant, when it is non-zero.
Let us now consider specific choices of vacua. With the parameters α and α′ we can control
the choice of vacuum that we impose on our result. Especially common are the vacuum choices
which diagonalise the Hamiltonian either in the asymptotic future or past, as discussed in sec.
3.4. Then possible choices correspond to in-in-, in-out- and out-out-vacua:

• The in-in expectation value corresponds to the choice α = α′ = 0. In this case our
EMT,

〈Tµν〉in−in = 〈Tµν〉 (4.99)

corresponds to the euclidean result.

1On the other hand, in the EMT only two point functions in the coincidence limit enter, which are completely
independent of any coordinates and therefore invariant under the full de Sitter group in any way.

2Note that in the coincidence limit y → x, or Z → 1, we see from eq. 3.63 that the euclidean Green function
reduces to constant terms of the form

lim
y→x

GE+(x, y) = GE+(−1) ∼ 2F1(a, b; c, 0) = 1. (4.95)

In this case we can also set iε to zero, because we do not run into any singularity of any sort.



50 4. The energy-momentum tensor of a quantised scalar field

• The in-out expectation value corresponds to the choice α = 0 and coshα′ = sinhα′,
giving γ∗ = coshα′ and hence A = B = 1. The EMT corresponding to this choice is

〈Tµν〉in−out = 〈Tµν〉+
m2

4
gµν . (4.100)

• The out-out expectation value corresponds to the choice coshα = sinhα and coshα′ =
sinhα′ , giving γ∗ = 0 and hence the coefficients A,B diverge in this case

〈Tµν〉out−out →∞. (4.101)

This is a direct consequence of the fact that in the class of (α, β)-vacua the Bogoliubov
coefficients are mode-independent and we generate an infinite energy density with respect
to the BD vacuum in the asymptotic future, as discussed in sec. 3.4. Therefore, it is
sensible that EMT in this case diverges and would cause singular backreaction.

In conclusion, as long as we respect de Sitter isometry, we will only get an EMT contribution
which equals a constant times the metric (see F). This contribution can be seen as a shift
of the cosmological constant. For a measure of the backreaction, de Sitter isometry must be
broken explicitly
Nonetheless, our discussion has beard some very valuable fruits for cosmology. It turns out,
that the higher derivative terms in the gravitational action give rise a non-eternal de Sitter
solution, which supplies us with a natural mechanism of a graceful exit from the exponential
expansion of the universe.



Chapter 5

Semi-classical gravity and inflation

In this section we want to have a further look into the meaning of the higher curvature terms,
we added to the gravitational action due to regularisation purposes. On a historic note, these
terms have turned out to be of great importance from a cosmological viewpoint. Starobinsky
noticed their importance and gave birth to what has become known as Starobinsky inflation.
Originally, this topic was discussed in what has become one of the most famous papers in the
field of cosmology [29]. Here we want to discuss some of his findings in sec. 5.1 [10, 15, 22,
29]. Furthermore, in sec. 5.2 [1, 30] we turn to a more modern view of inflation and draw
some parallels to Starobinsky inflation.

5.1 Starobinsky inflation

Recall the semi-classical equation from eq 4.51. Let us consider a FLRW universe with the
metric in 2.1, in terms of conformal time1 dt = a(η)dη. Since we are specifying to a conformally
flat spacetime, we may investigate the second order curvature terms more closely. One finds
that there is a simple relation between the newly added terms [15],

(1)Hµν = 3 (2)Hµν , (5.1)

so that we can choose to set b = 0 without loss of generality.
We want to consider the case of most general modified Einstein gravity up to second order in
curvature expressions. So let us investigate the possibility of additional conserved tensors. In
conformally flat space the Riemann tensor is given completely in terms of the Ricci and the
metric tensors [10]

Rαβγδ =
1

d− 2
(gαγRβδ + gβδRαγ − gαδRβγ − gβγRαδ)

+
1

(d− 2)(d− 1)
(gαδgβγ − gαγgβδ)

(5.2)

as the Weyl tensor Cαβγδ vanishes here. Hence, with some additional considerations (see [15])
one finds six independent quantities with the correct units of (length)−4,

RµαR
α
ν , RRµν , ∇µ∇νR, gµνRαβRαβ, gµνR2, gµν�R, (5.3)

1In this section we will consider the standard range of −∞ < η < 0.
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out of which one can build covariantly conserved tensors.
We find that in addition to (1)Hµν = 3 and (2)Hµν , there is one more term that can be added
to 4.51 which is only conserved in conformally flat spacetimes [15, 22],

(3)Hµν =−RµαRαν + 2
3RRµν +

1

2
gµνRαβR

αβ − 1
4R

2gµν

=− 1

12
R2gµν +RαβRαµβν .

(5.4)

This tensor is cannot be derived from variation of a curvature term in the action and is
therefore only accidentally conserved in conformally flat spacetimes [15]. Including this new
term, the semi-classical Einstein equation becomes

Gµν − gµνΛ = Rµν −
1

2
gµνR+ 8π

(
α(1)Hµν + β(3)Hµν

)
− gµνΛ = 8π〈Tµν〉. (5.5)

Following the famous paper of Starobinsky [29], let us consider this equation for an empty
universe with 〈Tµν〉 = 0. The equations of motion for a(η) are given by Gµ

ν − δµνΛ = 0. The
individual components are 2

G0
0 =

3

a2

(
a′2

a2
+K

)
− Λ +

24πβ

a4

(
a′2

a2
+K

)2

− 144πα

a4

(
4
a′2

a2

a′′

a
+
a′′2

a2
+ 2K

a′2

a2
− 2

a′′′

a

a′

a
−K2

)
,

G1
1 =G2

2 = G3
3,

Gµ
µ =

6

a3
(a′′ +Ka)− 4Λ +

96πβ

a8

[
aa′2a′′ − a′4 +Ka3a′′ −Ka2a′2

]
+

96πα

a8

[
3a3a′′′′ − 1

8π
a′′′a′ + 18aa′2a′′ − 9a2a′′2 − 6K

(
a3a′′ − a2a′2

) ]
(5.6)

where a′ := d a
dη . Note that the spatial and trace equations are of fourth order in derivatives

of the scale factor, whereas the 0 − 0 equation is only of third order. The general solutions
to the 0-0 equation (in terms of t) are discussed in [29]. For simplicity let us only discuss the
result for K = 0 here. The above equation admits the de Sitter solution

a(η) = − 1

Hη
, (5.7)

where the coefficient H obeys

−Λ

3
+H2 + 8πβH4 = 0. (5.8)

For a physical solution this sets the requirement that β < 0 as otherwiseH becomes imaginary.
We also see that we can safely set Λ = 0 and we still obtain a de Sitter solution with H =
1/
√

8π |β|. For K = ±1 one also obtains the respective de Sitter solution for the scale factor
[29].
Therefore, from the second order curvature terms in the Einstein equation, one naturally

2The 0 − 0 equation is equivalent to eq. (4) in [29], when substituting d
dt
→ 1

a(η)
d
dη

and letting k2 =

−2880π2β and k3 = −17280π2α.
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obtains an expanding universe, when homogeneity and isotropy of the spacetime are imposed
(FLRW). This is an amazing result since it removes some the arbitrariness of the de Sitter
spacetime choice for a cosmological setting. But we can push it even further. We know that
from the viewpoint of cosmology that we need to exit the exponentially expanding phase of
the universe at some point. We require what is known as a graceful exit to a FLRW universe,
where radiation or matter energy density can also play their dominating role [1].
With this in mind, let us now consider what happens if we allow for perturbations. We can
consider the solution for the scale factor to be

a(η) = − 1

Hη
(1 + sf(η)) , s� 1. (5.9)

where f(η) is some perturbation within the class of FLRW universes. We can then substitute
this into the 0-0 component of eq. 5.6 and solve perturbatively in s. To O

(
s0
)
we just obtain

the de Sitter solution from above. To O (s) we find the differential equation

6αη2
(
ηf ′′′ + f ′′

)
− (24α− β)ηf ′ + βf = 0. (5.10)

The general solution to this equation is

f(η) =
C1

η
+ C2η

3
2
−
√

9
4
− β

6α + C3η
3
2

+
√

9
4
− β

6α , (5.11)

In the inflationary paradigm the universe is in a de Sitter stage for the first moments and then
transitions into a FLRW universe. This gives us reason to match this solution to the O

(
s0
)

solution at the infinite past (η → −∞). It most sensible from a cosmological standpoint to
first have an inflationary model with an early de Sitter stage, which then transfers to a FLRW
type universe.
The parts of the perturbation which vanish at past infinity are

f(η) =
C1

η
+ C2η

3
2
−
√

9
4
− β

6α , (5.12)

since we said that β < 0. But note that as we progress into the future these solutions will
grow and become dominant. We therefore exit the perturbative regime. By analysing G0

0 = 0
further, Starobinsky found that the de Sitter solution is an unstable saddle point and that
non-singular deviations exist. Therefore, in this model we can realise the transition from the
de Sitter stage into a FLRW universe [29].

5.2 Slow roll inflation

Above we have seen that including higher derivative terms in the gravitational action naturally
gives us the freedom to produce a non-eternal de Sitter stage. The reason for this is that by
introducing these higher order curvature terms we also introduce new degrees of freedom. One
of these is a scalar degree of freedom which drives inflation [1].
Let us develop these ideas further. We will show that Starobinsky inflation can also be realised
by introducing a scalar field with certain restrictions on its potential. Consider a general scalar
field with potential V (ϕ),

S =

∫
ddx
√
|g|
(

1

2
∂µϕ∂

µϕ− V (ϕ)

)
. (5.13)
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in a FLRW universe. This gives the general equation of motion

�ϕ+ V,ϕ = ϕ̈+ (d− 1)Hϕ̇− 1

a2
∆ϕ+ V,ϕ = 0, (5.14)

where ˙(.) ≡ d .
dt and H = ȧ/a. We can drop the spatial derivative term ∆ϕ = 0 for spatially

homogeneous and isotropic initial conditions, justified by the cosmological principle. By com-
paring the EMT of a hydrodynamical fluid with the one of a scalar field one obtains that
energy density and pressure are respectively given by

ρ =
1

2
ϕ̇2 + V and p =

1

2
ϕ̇2 − V. (5.15)

We can realize the equation of state of de Sitter, ρ ≈ −p, by enforcing the condition 1
2

∣∣ϕ̇2
∣∣�

|V |. In this case the first Friedmann equation (see eqs. 2.8) then becomes

H =
ȧ

a
≈

√
16πV

(d− 2)(d− 1)
. (5.16)

For an approximate de Sitter solution H ≈ const., which sets the requirement that the slow-
roll parameters [30]

ε = − Ḣ

H2
, δ = − Ḧ

2HḢ
, (5.17)

are both small. In the slow-roll regime we can neglect the acceleration term in the scalar field
equation of motion, resulting in

(d− 1)Hϕ̇+ V,ϕ≈ 0. (5.18)

Combining this with eq. 5.16 we obtain the scale factor solution

a(ϕ) ≈ a0 exp

(
16π

d− 2

∫ ϕ0

ϕ
dϕ̃

V

V,ϕ̃

)
, (5.19)

giving the desired exponential expansion.
The conditions we used to obtain this solution,

1

2

∣∣ϕ̇2
∣∣� |V | , |ϕ̈| � (d− 1) |Hϕ̇| ≈ |V,ϕ | , (5.20)

are known as slow roll conditions. We can reformulate them only in terms of the potential V
as [1] (

V,ϕ
V

)2

� 1,

∣∣∣∣V,ϕϕV
∣∣∣∣� 1. (5.21)

This is equivalent to ε � 1 and δ � 1. Then as soon as we violate these conditions, the
inflationary stage of the universe ends and we model a graceful exit.
In conclusion, we have successfully showed that by introducing a scalar degree of freedom we
can produce results which are equivalent to Starobinsky inflation [1].



Chapter 6

Loop corrections and IR effects in
interacting theories

So far we have focused on free fields and UV effects of non-interacting scalar field theories.
What we have learned so far is that the BD vacuum is a good choice for a vacuum in the UV
limit, but is certainly not the only valid choice. Accepting that the BD solutions provide a
good in-vacuum choice, we can introduce a formalism known as the Schwinger-Keldysh, in-in
or closed time path (CTP) formalism which was designed as an extension to the Feynman
diagrammatic technique for dynamic backgrounds and non-equilibrium processes [40]. In
this framework one can preform calculations only with respect to the in-vacuum, making no
reference to time evolved vacua.
We want to then turn away from the UV limit and use this formalism to discuss self-interactions
of our field and effects that occur on larger scales.
Firstly, we want to give an overview of the IR limit of our previous results in sec. 6.1 [4, 38].
Then we want to introduce the CTP formalism briefly in sec. 6.2 [1, 8, 9, 15, 23, 31–37], before
turning to a direct application and calculating loop corrections to the propagator in the IR
limit in sec. 6.3 [5, 8, 9, 31, 37]. The found results will turn out to be de Sitter invariant and
in sec. 6.4 [8] we will discuss the generality of our findings.

6.1 A naive estimate of the IR contributions at tree level

Consider the IR expansion of the BD modes in eq. 3.39 in the IR limit,

qk(η) = η
d−1
2
[
A−(kη)−n +A+(kη)n +B(kη)2−n +O

(
(kη)2+n

)]
, where

A− = − i2
nΓ(n)

π
, A+ = − i2

−n cos(πn)Γ(−n)

π
+

2−n

Γ(n+ 1)
, B = − i2

n−2Γ(n)

π(n− 1)
.

(6.1)

Therefore the leading contributions to the BD two point functions in the IR limit are

〈φk(ηx)φk(ηy)〉 ≈ (ηxηy)
d−1
2

[
|A−|2 (kηxkηy)

−n +A∗−A+

(
ηy
ηx

)n
+A−A

∗
+

(
ηx
ηy

)n ]
. (6.2)

The first term is by far the most contributing in the IR limit, so let us focus on this term only.
Transforming this back to position space, we find

〈φ(x)φ(y)〉 ∝ (ηxηy)
d−1
2
−n
∫
d̄d−1k

k2n
eik.(x−y). (6.3)
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Recall that n =

√(
d−1

2

)2 − m2

H2 and hence the behaviour depends on the magnitude of the mass
of our field with respect to the curvature scale. For the the complementary series m

H �
d−1

2
and 2n ≈ d− 1. In this case we obtain a logarithmic IR divergence in the two point function.
We would have to introduce an IR cutoff and could consider the consequences this has on
cosmology [38]. But in this quasi massless limit one runs into even deeper problems, since
then we lose the notion of a de Sitter invariant vacuum [4]. Therefore, we will keep the mass
at a non-zero but small value, such that n remains real. Then also d − 2 > n and the above
integral will converge at the lower bound. Using the intermediate result of sec. D, we can
estimate ∫ π

0
dθ sind−3 θe−ikrcosθ ≈ (kr)−

d−3
2 J d−3

2
(kr) ∼ (kr)−

d−3
2 (kr)

d−3
2 ∼ O(1), (6.4)

where r = |x− y|. So this does not give any contribution to our estimate. Then we find for
the complementary series that

〈φ(x)φ(y)〉 ∝ (ηxηy)
d−1
2
−n
∫
dk kd−2−2n, (6.5)

which behaves smoothly in the IR limit of the integral, but diverges at the asymptotic future
η → 0.

6.2 The closed time path formalism

In most curved spacetimes we are dealing with a dynamical background and hence a system
out of thermal equilibrium. The closed time path (CPT) formalism1 is a very useful tool for
studying such situations. We have observed that the BD vacuum is a valid candidate for the
in-vacuum, but on the same footing does not diagonalize the Hamiltonian on later time slices.
This alone is a very convincing argument for using a method which only makes reference to
the in-vacuum. Here, we want to give a summary and short introduction to the method on
the basis of [8, 31–35].
In quantum mechanics, time evolution from some time ti to a later time tf is given by the
evolution operator U(tf , ti) which is defined as the solution to

i
d

dt
U(t, ti) = H(t)U(t, ti), (6.6)

where H(t) = H0(t) + HI(t) is the full Hamiltonian, which consists of free + interaction
parts and may be time dependent. The vacuum at any time t is defined by H0(t)

∣∣ 0t〉, which
indicates that the true vacuum may be time dependent for time dependent Hamiltonians. The
formal solution to the above equation is

U(tf , ti) = exp

(
−i
∫ tf

ti

dt′H(t′)

)
, ti < tf . (6.7)

Evolution backwards in time, from tf to ti is given by

U(ti, tf ) = exp

(
−i
∫ ti

tf

dt′H(t′)

)
= U(tf , ti)

†, (6.8)

1We will refer to this method as the closed time path (CPT) method since it describes best what is happening
mathematically, but in the literature the notions Schwinger-Keldysh or in-in formalism are exchangeably used.
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since the Hamiltonian is a hermitian operator.
We have seen that in general our in- and out-vacua are different states. In the Schrödinger
picture, they evolve as∣∣ inf〉 = U(tf , ti)

∣∣ ini〉 and
∣∣ outf〉 = U(tf , ti)

∣∣ outi〉, (6.9)

where we will use the subscript notation to specify the time in the Schrödinger/interaction pic-
ture and omit the subscript for time independent states in the Heisenberg picture. The Heisen-
berg states are defined such that

∣∣ in〉 =
∣∣ ini〉, ∣∣ out〉 =

∣∣ outf〉 and H(ti)
∣∣ in〉, H(tf )

∣∣ out〉
give the minimum energy. The expectation value of some observable, represented by the op-
erator O(t) with respect to an arbitrary initial state, represented by the density matrix ρi at
time ti, at some other time t is given by

〈O(t)〉ρ =
tr
(
U(t, ti)

†O(t)U(t, ti)ρi
)

tr(ρi)
. (6.10)

The density matrix reflects the vacuum choice, e.g. for a in-in-expectation value one can
choose ρi =

∣∣ ini〉〈ini ∣∣ and hence

〈O(t)〉in−in =
〈
ini

∣∣∣U(t, ti)
†O(t)U(t, ti)

∣∣∣ ini〉 . (6.11)

assuming
〈
ini | ini

〉
= 1 and similarly for the out-out-expectation value. From eq. 4.2 we

observe that in the path integral formalism the overlap of vacuum states can be represented
as [1, 15, 23]

〈out |U(tf , ti) | in〉 =
〈
out∗ | in∗

〉
=

∫ φ(xf )=φ(tf ,x)

φ(xi)=φ(ti,x)
Dφ eiS[φ], (6.12)

for some field φ with general action S[φ], where subscript in
〈
out∗ | in∗

〉
is notation for the

overlap at an arbitrarily chosen time. As we have seen
〈
outf | ini

〉
6= 1 in general curved

spacetimes, due to particle production out of gravitational energy. Field expectation values
are obtained by introducing an artificial source term,

Z[J, gµν ] = 〈out |UJ(tf , ti) | in〉 =

∫ φ(xf )

φ(xi)
Dφ eiS[φ,gµν ]+i

∫
ddx
√
|g|Jφ, (6.13)

and then differentiating the generating functional with respect to it

〈out | T {φ(x1) . . . φ(xn)} | in〉 =

=
1√
|g(x1)|

δ

δiJ(x1)
. . .

1√
|g(xn)|

δ

δiJ(xn)
lnZ[J, gµν ]

∣∣∣∣
J=0

,
(6.14)

where T {.} denotes time ordering. The source term in the logarithm introduces a factor
1/Z[J, gµν ] to cancel vacuum diagrams. Time ordering appears naturally in the path integral
formalism (see app. E).
Since we included a source term in the action the Hamiltonian changes and the evolution
operator must also be adapted accordingly,

UJ(tf , ti) = exp

(
−i
∫ ti

tf

dt′H(t′) + i

∫
ddx
√
|g|Jφ

)
. (6.15)
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t

ti

ti tf

Figure 6.1: The closed time path contour, where we integrate from some initial time ti up to
a specific time tf and then back to ti.

Hence, for the in-out expectation value in eq. 6.13 we evolve the in-vacuum under the influence
of the background curvature and a single source J and then compare this to the out-vacuum.
In the CTP formalism one considers the influence of two sources J± on the in-vacuum and
then compares the result at some arbitrary time tf > ti in the future. In a mathematical
language, we want to define a quantity Z[J+, J−, gµν ], which corresponds to [35]

Z[J+, J−, gµν ] = J−
〈
in | in

〉
J+ =

〈
in
∣∣∣UJ−(t, ti)

†UJ+(t, ti)
∣∣∣ in〉 . (6.16)

With this in mind we can introduce two artificial fields φ±, corresponding to the two sources
J± and construct2 [31, 32, 35, 36]

Z[J+, J−, gµν ] =

=

∫ φ(xf )

φ(xi)
Dφ+

∫ φ(xi)

φ(xf )
Dφ−

× exp

(
iS[φ+, gµν ] + i

∫
ddx
√
|g|J+φ+ − iS[φ−, gµν ]− i

∫
ddx
√
|g|J−φ−

)
,

(6.17)

Diagrammatically the path integral can be thought of as integrating along the contour shown
in fig. 6.1, giving it the name closed time path formalism. The quantities φ+ and J+ live on
the upper branch going from ti → tf and φ− and J− on the lower one going back from tf → ti.
But we introduced these quantities only as mathematical tools and they still represent the
physical field φ. Therefore, at the point tf the fields and their derivatives must match

φ+(xf ) = φ−(xf ) and ∂tφ
+(x)|xf = ∂tφ

−(x)|xf . (6.18)

In the end, only the physical field is relevant and we have to set φ± to φ.
If we evolve the system forward and then backward in time under the influence of the same
source, we expect nothing to happen and our normalisation to be reproduced. Indeed, setting
the sources equal in eq. 6.17 we see

Z[J, J, gµν ] =
〈
in | in

〉
= 1. (6.19)

Let us now turn to correlation functions. Since we now have two sources to take a variation
with respect to, we will have to investigate the differences. Varying with respect to J+ we get
the usual time ordered correlation function [31],

〈in | T {φ(x1) . . . φ(xn)} | in〉 =

=
1√
|g(x1)|

δ

δiJ+(x1)
. . .

1√
|g(xn)|

δ

δiJ+(xn)
Z[J+, J−, gµν ]

∣∣∣∣
J±=0

.
(6.20)

2This expression is generally only valid for pure states and a discussion of the generalisation can be found
in [36], but since we want to only deal with in-in pure states this simplified approach will be sufficient for our
analysis.
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When we vary with respect to J− we have to keep in mind that the time direction is reversed.
We are moving form a later time tf to an earlier one ti. This will be reflected in the correlation
function and we hence obtain anti-time ordering [31],〈

in
∣∣ T̄ {φ(x1) . . . φ(xn)}

∣∣ in〉 =

=
1√
|g(x1)|

δ

δiJ−(x1)
. . .

1√
|g(xn)|

δ

δiJ−(xn)
Z[J+, J−, gµν ]

∣∣∣∣
J±=0

,
(6.21)

where T̄ {.} denotes anti-time ordering. Lastly, we can combine variation with respect to J+

and J−. In this case, note that the fields φ− exist only on the later half of the time contour
and hence will always appear ordered after the φ+ fields in the correlation function. Therefore,

〈
in
∣∣ T̄ {φ(x1) . . . φ(xn)}T {φ(xn+1) . . . φ(xm)}

∣∣ in〉 =

=
1√
|g(x1)|

δ

δiJ−(x1)
. . .

1√
|g(xn)|

δ

δiJ−(xn)

× 1√
|g(xn+1)|

δ

δiJ+(xn+1)
. . .

1√
|g(xm)|

δ

δiJ+(xm)
Z[J+, J−, gµν ]

∣∣∣∣
J±=0

.

(6.22)

There are no vacuum diagrams to cancel and consequently there is no need to take the loga-
rithm of our generating functional Z[J+, J−, gµν ] to obtain the correlation functions. This is
reflected in the condition in eq. 6.19.
In the free field theory the integral in eq. 6.17 is Gaussian and can be integrated [23]. In this
case we obtain [31, 35]

Z0[J+, J−, gµν ] = exp

[
− i

2

∫
ddxddy

√
|g(x)|

√
|g(y)|(

J+(x)G++
0 (x, y)J+(y) + J−(x)G−−0 (x, y)J−(y)

− J+(x)G+−
0 (x, y)J−(y)− J−(x)G−+

0 (x, y)J+(y)
)]
,

(6.23)

where the subscripts on the generating functional and the Green functions indicates the loop
level – here we are considering a free theory. From the property in eq. 6.19 we find that the
Green functions must obey

G++
0 +G−−0 −G+−

0 −G−+
0 = 0. (6.24)

The Green functions are the solutions to the integral equations [31]∫
ddy
√
|g(y)|K(x, y)G±±0 (y, z) = ± 1√

|g(x)|
δd(x− z),∫

ddy
√
|g(y)|K(x, y)G±∓0 (y, z) = 0,

(6.25)

where K(x, y) is the differential operator giving the equation of motion. At the moment we
keep K(x, y) general, but later we will specify to the Klein-Gordon operator. Comparing to
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the known propagators of sec. 3, one finds that all four of the above propagators can be
expressed as [8, 31, 32]

iG++
0 (x, y) =

〈
in
∣∣ TC{φ+(x)φ+(y)}

∣∣ in〉 = 〈in | T {φ(x)φ(y)} | in〉
iG−−0 (x, y) =

〈
in
∣∣ TC{φ−(x)φ−(y)}

∣∣ in〉 =
〈
in
∣∣ T̄ {φ(x)φ(y)}

∣∣ in〉
iG−+

0 (x, y) =
〈
in
∣∣ TC{φ−(x)φ+(y)}

∣∣ in〉 = 〈in |φ(x)φ(y) | in〉
iG+−

0 (x, y) =
〈
in
∣∣ TC{φ+(x)φ−(y)}

∣∣ in〉 = 〈in |φ(y)φ(x) | in〉

(6.26)

where TC{.} corresponds to time ordering along the contour in fig. 6.1. The first two Green
functions are symmetric in their arguments,

iG±±0 (x, y) = iG±±0 (y, x), (6.27)

due to (anti-)time ordering. The second two Green functions obey [35]

iG±∓0 (x, y) = iG∓±0 (y, x). (6.28)

We can reduce the number of propagators by one if we preform a rotation in the fields [8, 31].
We can define a new basis of fields through the superposition

φc =
1√
2

(
φ+ + φ−

)
and φq =

1√
2

(
φ+ − φ−

)
, (6.29)

with the subscript c standing for “classical” and q for “quantum”, the notation stemming from
condensed matter theory [8]. This rotation is referred to as Keldysh rotation and the fields φc
and φq are known as Keldysh basis [31]. The tree level generating functional, eq. 6.23 can be
written as [31]

Z0[Jc, Jq, gµν ] =

= exp

[
− i

2

∫
ddx
√
|g(x)|ddy

√
|g(y)|

×
(
Jq(x)GK0 (x, y)Jq(y) + Jq(x)GR0 (x, y)Jc(y) + Jc(x)GA0 (x, y)Jq(y)

) ]
,

(6.30)

where Jc = 1√
2

(J+ + J−) and Jq = 1√
2

(J+ − J−). These new correlation functions can easily
be related to the ones in eq. 6.26 [8, 31, 32],

iGK0 (x, y) := 〈in |φc(x)φc(y) | in〉
=iG++(x, y) + iG−−(x, y) = 〈in | {φ(x), φ(y)} | in〉

iGR0 (x, y) := 〈in |φc(x)φq(y) | in〉
=iG−+(x, y)− iG−−(x, y) = Θ(tx − ty) 〈in | [φ(x), φ(y)] | in〉

iGA0 (x, y) := 〈in |φq(x)φc(y) | in〉
=iG+−(x, y)− iG−−(x, y) = −Θ(ty − tx) 〈in | [φ(x), φ(y)] | in〉
〈in |φq(x)φq(y) | in〉 = 0

(6.31)

where we see that the number of propagators is reduced by one as the q-q-correlation function
is zero. These propagators can be represented diagrammatically as in fig. 6.2. iGK0 (x, y) is
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φc(x) φc(y)
GK0 (x, y)

φc(x) φq(y)
GR0 (x, y)

φq(x) φc(y)
GA0 (x, y)

Figure 6.2: Diagrammatic representation of the Keldysh, retarded and advanced propagators
respectively. The classical fields φc are represented by solid lines and the quantum fields φq
are represented by dashed lines.

referred to as the Keldysh propagator. As found in sec. 3.7 (see eq. 3.87) for the free theory,
the Keldysh propagator is invariant under O(1, d). Additionally, it depends on the occupation
number of the chosen Fock space or equivalently on the chosen vacuum and therefore on the
background evolution [8, 9, 31].
The other two propagators iGR0 (x, y) and iGA0 (x, y) are referred to as retarded and advanced
propagators, respectively. These propagators are independent of the chosen Fock space or
vacuum as the commutator [φ(x), φ(y)] is only a numerical quantity at tree level, as we have
also found in sec. 3.7 (see eq. 3.85) [8, 9, 31].
For the free theory, we luckily already calculated the above propagators in previous sections.
Since we have seen that the BD (or euclidean) vacuum corresponds to a good choice of in-
vacuum, we can reuse our results based on 3.55. The tree level Keldysh propagator is just

iGK0 (x, y) = G+(Zε(x, y)) +G+(Z−ε(x, y)). (6.32)

The retarded and advanced propagators can also be written in terms of the BD propagators
as

iGR0 (x, y) = Θ(tx − ty) (G+(Z(x, y)− iε)−G+(Z(x, y) + iε)) ,

iGA0 (x, y) = Θ(ty − tx) (G+(Z(x, y)− iε)−G+(Z(x, y) + iε)) = iGR0 (y, x),
(6.33)

respectively.
In contrast to the Feynman diagrammatic technique the CTP formalism is completely causal,
meaning that all loop contributions to the correlation functions depend only on the causal
past of their arguments [8, 37].
Let us now move to partial momentum space by taking the spatial Fourier transform,

G(k; ηx, ηy) =

∫
d̄d−1keik.(x−y)G(x, y), (6.34)

of our propagators. To simplify the notation slightly, let us write our euclidean mode expansion
of eq. 3.39 as

φ(x) =
1√
H

(Hη)
d−1
2

∫
d̄d−1k

(
akh(kη)∗eik.x + a†kh(kη)e−ik.x

)
. (6.35)
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Substituting this mode expansion into eqs. 6.31, the free field propagators can be expressed
in terms of the mode functions as

iGK0 (k; ηx, ηy) = 〈in | {φ(x), φ(y)} | in〉

=
1

H

(
H2ηxηy

) d−1
2 (h(kηx)∗h(kηy) + h(kηx)h(kηy)

∗)

iGR0 (k; ηx, ηy) = Θ(ηx − ηy) 〈in | [φ(x), φ(y)] | in〉

= Θ(ηx − ηy)
1

H

(
H2ηxηy

) d−1
2 (h(kηx)∗h(kηy)− h(kηx)h(kηy)

∗)

iGA0 (k; ηx, ηy) = −Θ(ηy − ηx) 〈in | [φ(x), φ(y)] | in〉

= −Θ(ηy − ηx)
1

H

(
H2ηxηy

) d−1
2 (h(kηx)∗h(kηy)− h(kηx)h(kηy)

∗) .

(6.36)

For a general vacuum or excited state, where the vacuum is not annihilated by ak, the Keldysh
propagator has the form

iGK(k; ηx, ηy) = (h(kηx)∗h(kηy) + h(kηx)h(kηy)
∗)
(

1 + 2〈a†kak〉
)

+ 2h(kηx)h(kηy)〈a†ka
†
−k〉+ 2h(kηx)∗h(kηy)

∗〈aka−k〉,
(6.37)

which again shows that the Keldysh propagator depends on the chosen Fock space. In quantum
mechanics 〈a†kak〉 is the usual number operator which gives information about the occupation
number of the system per comoving volume [8]. 〈aka−k〉 and its conjugate counterpart are
known as the anomalous quantum averages, which can be interpreted as signalling the strength
of backreaction on the background metric [8]. Although, one has to be very careful with
adapting these interpretations for a dynamic background since we know that the particle
concept is flawed. Therefore we will avoid these interpretations generally, denote

nk = 1 + 2〈a†kak〉 and κk = 〈aka−k〉 (6.38)

and only use the notation as a mathematical tool. But the general Fock state dependence of
the Keldysh propagator is very useful. Due to its connection to the occupation number its
change can tell us about the strength of backreaction. In addition, we have seen that it is
invariant under the full de Sitter group.
Due to our interested in the contribution of loop diagrams, their magnitude and therefore
the amount of backreaction pn the spacetime geometry we can expect, we must consider self-
interacting fields in the CTP formalism. Let us consider the action of an interacting λφ4

theory

S[φ, gµν ] =
1

2

∫ f

i
ddx
√
|g(x)|

[
gµν∇µφ(x)∇νφ(x)−M2φ2(x)− λ

4!
φ4(x)

]
, (6.39)

where we have defined M2 = m2 − ξR as the effective mass. Preforming the above change of
variables in the field,

S[φc, φq, gµν ] = S[φ+, gµν ]− S[φ−, gµν ]

=

∫ f

i
ddx
√
|g|
[
gµν∇µφc∇νφq −M2φcφq −

λ

4!
φcφq

(
φ2
c + φ2

q

)]
.

(6.40)
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φcφc

φc φq

−iλ

φqφq

φq φc

−iλ

Figure 6.3: Diagrammatic representation of the four point interactions. The classical fields φc
are represented by solid lines and the quantum fields φq are represented by dashed lines.

We see that for a purely classical field configuration, where φq = 0 the action is zero [31, 33],

S[φc, φq = 0, gµν ] = 0. (6.41)

In our case this is also true for φc = 0, but e.g. in λφ3 theories,

λφ3 =
λ√
2
φq
(
3φ2

c + φ2
q

)
, (6.42)

where this property indeed only holds for the purely classical configuration. Thinking in terms
of the φ± fields, when φq = 0 we have φ+ = φ− and the forward and backward propagation
along the time contour cancel [33]. Thus it is only sensible that the action is zero as the
forward and backward branch of the time contour exactly cancel.
Let us denote the interacting part of the action as

SI [φc, φq, gµν ] =

∫
ddx
√
|g| λ

4!

(
(φ+)4 − (φ−)4

)
=

∫
ddx
√
|g| λ

4!
φcφq

(
φ2
c + φ2

q

)
. (6.43)

The possible vertex contributions are depicted in fig. 6.3. Treating the interaction as a
perturbation, we can write the generating functional as

Z[J+, J−, gµν ] =

= exp

(
iSI

[
φ+ → 1√

|g|
δ

δiJ+
, φ− → 1√

|g|
δ

δiJ−
, gµν

])
Z0[J+, J−, gµν ].

(6.44)

The Feynman rules are [31]:

• For propagation between two field configurations φ(±)(x) and φ(±)(y) a propagator factor
G

(±)(±)
0 (x, y) is introduced.

• Each vertex should be integrated over, giving a contribution of −iλ
∫
ddx
√
|g(x)|.

• Since the S[φ−, gµν ] appears with an additional minus sign, each such vertex gives an
extra factor of −1.

• Lastly, we must include symmetry factors.

Alternatively we can express the generating functional in the Keldysh basis. Considering that

J+φ+ − J−φ− = Jcφq + Jqφc, (6.45)
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the generating functional becomes

Z[Jc, Jq, gµν ] = exp

(
iSI

[
φc →

1√
|g|

δ

δiJq
, φq →

1√
|g|

δ

δiJc
, gµν

])
Z0[Jc, Jq, gµν ], (6.46)

where the fields in the interaction part of the action are replaced by variations with respect
to the sources according to the above equation. For these fields, the Feynman rules are [31]:

• For propagation between two field configurations φ(c/q)(x) and φ(c/q)(y) the correspond-
ing propagator factor GK/R/A0 (x, y) is introduced. In partial Fourier space, the propa-
gators are represented by their corresponding counterparts GK/R/A0 (k; ηx, ηy).

• Each vertex should be integrated over, giving −iλ
∫
ddx
√
|g(x)|. Alternatively, in partial

Fourier space, we have to integrate over internal momenta and time, so that we have to
integrate over −iλ

∫
dη
∫
d̄d−1k. (Note that for different combinations of fields, e.g. in

eq. 6.42, corresponding numerical factors might appear and must be included.)

• Lastly, we must include symmetry factors.

We now want to utilize this analysis to find loop corrections to the Keldysh propagator in the
Poincaré patch.

6.3 Loop correction in the expanding Poincaré patch

We are still most interested in the question of how the cosmological constant in de Sitter space
might be screened due to particle production and interaction. Our discussion above leads to
the conclusion that the Keldysh propagator is the most interesting propagator to consider, due
to its dependence on the occupation number. Furthermore, since the UV limit only reproduces
the flat space results, we are mostly interested in the IR nature of the loop corrections.
The lowest order loop corrections to the Keldysh propagator are [9, 31]

iGK(2)(x, y) = −λ
2

12

(
+

+3 + 3

+3 + 3

+

)
,

(6.47)
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where the subscript labels only the two loop contributions. Using the above Feynman rules in
partial Fourier space, we can represent the above diagrams in terms of propagators [9, 31],

iGK(2)(k; ηx, ηy) =

=− λ2

12

∫ 0

∞

∫ 0

∞
dηudηv

∫ ∞
0

∫ ∞
0

d̄d−1q1d̄
d−1q2

×
[
−GR0 (k; ηx, ηu)GR0 (q1; ηu, ηv)G

R
0 (q2; ηu, ηv)G

R
0 (|k − q1 − q2| ; ηu, ηv)GK0 (k; ηv, ηy)

−GK0 (k; ηx, ηu)GA0 (q1; ηu, ηv)G
A
0 (q2; ηu, ηv)G

A
0 (|k − q1 − q2| ; ηu, ηv)GA0 (k; ηv, ηy)

−3GR0 (k; ηx, ηu)GA0 (q1; ηu, ηv)G
A
0 (q2; ηu, ηv)G

K
0 (|k − q1 − q2| ; ηu, ηv)GA0 (k; ηv, ηy)

−3GR0 (k; ηx, ηu)GR0 (q1; ηu, ηv)G
R
0 (q2; ηu, ηv)G

K
0 (|k − q1 − q2| ; ηu, ηv)GA0 (k; ηv, ηy)

+16GR0 (k; ηx, ηu)GK0 (q1; ηu, ηv)G
K
0 (q2; ηu, ηv)G

R
0 (|k − q1 − q2| ; ηu, ηv)GK0 (k; ηv, ηy)

+16GK0 (k; ηx, ηu)GK0 (q1; ηu, ηv)G
K
0 (q2; ηu, ηv)G

A
0 (|k − q1 − q2| ; ηu, ηv)GA0 (k; ηv, ηy)

+GR0 (k; ηx, ηu)GK0 (q1; ηu, ηv)G
K
0 (q2; ηu, ηv)G

K
0 (|k − q1 − q2| ; ηu, ηv)GA0 (k; ηv, ηy)

]
.

(6.48)

Since we are only interested in the behaviour of the loop corrections in the IR limit, there is a
number of approximations one can make to find the leading order contributions. This has been
done in various publications [8, 9, 31], etc.. In these references mostly φ3 interactions were
discussed, since there the calculations are slightly easier and the fact that the theory is unstable
is only of secondary concern. Additionally, one has to distinguish different mass ranges since
the mode functions in eq. 3.39 behave differently depending on the magnitude of m/H. We
will focus on the complementary series, where n ∈ R. For a conformally coupled field in d = 4,
n =

√
1
4 −

m2

H2 . Therefore, for the following calculation we will assume 0 < n < 1/2.
For the approximate evaluation of the expression in eq. 6.48, I found it simplest to follow [9]
and [8] with additional input from [5] since these authors have done most work in the field up
to this point. We will assume the above expression to be correctly UV regularised, so that we
do not have to bother with UV divergences. But this is not really a problem in partial Fourier
space, since we have full control over the magnitude of our momentum.
Let us start by writing eq. 6.48 in terms of mode functions as

iGK(2)(k; ηx, ηy) ≈

≈ − iλ2

12H
(HηxHηy)

d−1
2

(
h(kηx)∗h(kηy)n

(2)
k (η) + h(kηx)∗h(kηy)

∗κ
(2)
k (η) + c.c

) (6.49)

where in n(2)
k (η) and κ(2)

k (η) – representing the two loop contribution to nk and κk – we have
replaced the conformal times ηx,y by the average time η =

√
ηxηy = 1

H e
−H(tx+ty)/2, which

corresponds to the IR limit when taking both times to future infinity. This approximation
takes care of the Θ-functions containing ηx,y in the retarded and advanced propagators. The
Θ-functions containing ηu,v can all be brought to the same form by exchanging ηu ↔ ηv in
some loop contributions. Although, here we will neglect this theta function and fix the upper
bound of ηu,v to η. These expressions are

n
(2)
k (η) ≈ 1

H

∫ η

∞

∫ η

∞
dηudηyh(kηu)h(kηv)

∗Fn(k, ηu, ηv)

κ
(2)
k (η) ≈− 1

H

∫ η

∞

∫ η

∞
dηudηvh(kηu)h(kηv)Fκ(k, ηu, ηv).

(6.50)



66 6. Loop corrections and IR effects in interacting theories

We have summarised the actual loop expressions in

Fn(k, ηu, ηv) =
1

H3
(HηuHηv)

d−2

∫ ∞
0

∫ ∞
0

d̄d−1q1d̄
d−1q2[

35h (ηvq1)h (ηvq2)h (ηv (q1 + q2))h∗ (ηuq1)h∗ (ηuq2)h∗ (ηu (q1 + q2))

+39h (ηuq1)h (ηvq2)h (ηv (q1 + q2))h∗ (ηvq1)h∗ (ηuq2)h∗ (ηu (q1 + q2))

+27h (ηvq1)h (ηuq2)h (ηv (q1 + q2))h∗ (ηuq1)h∗ (ηvq2)h∗ (ηu (q1 + q2))

+23h (ηuq1)h (ηuq2)h (ηv (q1 + q2))h∗ (ηvq1)h∗ (ηvq2)h∗ (ηu (q1 + q2))

−37h (ηvq1)h (ηvq2)h (ηu (q1 + q2))h∗ (ηuq1)h∗ (ηuq2)h∗ (ηv (q1 + q2))

−41h (ηuq1)h (ηvq2)h (ηu (q1 + q2))h∗ (ηvq1)h∗ (ηuq2)h∗ (ηv (q1 + q2))

−29h (ηvq1)h (ηuq2)h (ηu (q1 + q2))h∗ (ηuq1)h∗ (ηvq2)h∗ (ηv (q1 + q2))

−25h (ηuq1)h (ηuq2)h (ηu (q1 + q2))h∗ (ηvq1)h∗ (ηvq2)h∗ (ηv (q1 + q2))
]
,

(6.51)

Fκ(k, ηu, ηv) =
1

H3
(HηuHηv)

d−2

∫ ∞
0

∫ ∞
0

d̄d−1q1d̄
d−1q2[

− 7h (ηvq1)h (ηvq2)h (ηv (q1 + q2))h∗ (ηuq1)h∗ (ηuq2)h∗ (ηu (q1 + q2))

−7h (ηuq1)h (ηvq2)h (ηv (q1 + q2))h∗ (ηvq1)h∗ (ηuq2)h∗ (ηu (q1 + q2))

+5h (ηvq1)h (ηuq2)h (ηv (q1 + q2))h∗ (ηuq1)h∗ (ηvq2)h∗ (ηu (q1 + q2))

+5h (ηuq1)h (ηuq2)h (ηv (q1 + q2))h∗ (ηvq1)h∗ (ηvq2)h∗ (ηu (q1 + q2))

+5h (ηvq1)h (ηvq2)h (ηu (q1 + q2))h∗ (ηuq1)h∗ (ηuq2)h∗ (ηv (q1 + q2))

+5h (ηuq1)h (ηvq2)h (ηu (q1 + q2))h∗ (ηvq1)h∗ (ηuq2)h∗ (ηv (q1 + q2))

−7h (ηvq1)h (ηuq2)h (ηu (q1 + q2))h∗ (ηuq1)h∗ (ηvq2)h∗ (ηv (q1 + q2))

−7h (ηuq1)h (ηuq2)h (ηu (q1 + q2))h∗ (ηvq1)h∗ (ηvq2)h∗ (ηv (q1 + q2))
]
,

(6.52)

where Fn and Fκ are essentially the same, up to the respective numerical coefficients of the
individual terms.
Recall that in the IR limit, the the BD modes behave as in eq. 6.1. Since we set the range
on n to 0 < n < 1/2 all the Γ-functions in the above expressions are purely real. Due to the
symmetry in complex conjugation in eq. 6.49, there will be some simplifications.
First, we start by investigating the behaviour of Fn(k, ηu, ηv) and Fκ(k, ηu, ηv). Since all the
terms in the expressions are the same up to different combinations of Hankel functions and
their corresponding conjugates, we can pick one particular term and use it as a representative,

F (k, ηu, ηv) =
1

H3
(HηuHηv)

d−2

∫ ∞
0

∫ ∞
0

d̄d−1q1d̄
d−1q2

× h(q1ηu)∗h(q1ηv)h(q2ηu)∗h(q2ηv)

× h(|k − q1 − q2| ηu)∗h(|k − q1 − q2| ηv)

(6.53)

All other terms will behave similarly. We can split the momentum integrals as∫ ∞
0

∫ ∞
0

d̄d−1q1d̄
d−1q2 =

(∫
q1<k

+

∫
q1>k

)(∫
q2<k

+

∫
q2>k

)
d̄d−1q1d̄

d−1q2 (6.54)

which then gives four regions of integration
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1. q1 < k, q2 < k

2. q1 > k, q2 > k

3. q1 < k, q2 > k

4. q1 > k, q2 < k.

The contribution of the first interval can be estimated by approximating |k − q1 − q2| ≈ k
and then taking the small k limit,

F1(k, ηu, ηv) ≈
1

H3
(HηuHηv)

d−2h(kηu)∗h(kηv)

×
∫
q1<k

∫
q2<k

d̄d−1q1d̄
d−1q2h(q1ηu)∗h(q1ηv)h(q2ηu)∗h(q2ηv)

∼(ηuηv)
d−2−3nk−2n

∫
q1<k

∫
q2<k

d̄d−1q1d̄
d−1q2(q1q2)−2n

∼(ηuηv)
d−2−3nk2(d−1−3n),

(6.55)

which is well behaved in the IR limit for d− 1− 3n > 0.
In the second interval range we can approximate |k − q1 − q2| ≈ |q1 + q2|, giving

F2(k, ηu, ηv) ≈
1

H3
(HηuHηv)

d−2

∫
q1>k

∫
q2>k

d̄d−1q1d̄
d−1q2

× h(q1ηu)∗h(q1ηv)h(q2ηu)∗h(q2ηv)h(|q1 + q2| ηu)∗h(|q1 + q2| ηv),
(6.56)

which in this approximation gets rid of the k dependence in F2(k, ηu, ηv) ≈ F2(ηu, ηv) when
we take k → 0.
The integral in the intervals 3. and 4. behave similarly. Approximating |k − q1 − q2| ≈ q2,

F3(k, ηu, ηv) ≈F4(k, ηu, ηv)

∼(ηuηv)
d−2−n

∫
q1<k

∫
q2>k

d̄d−1q1 d̄
d−1q2

× q−2n
1 h(q2ηu)∗h(q2ηv)h(q2ηu)∗h(q2ηv)

∼(ηuηv)
d−2−nkd−1−2n

∫
q2>k

d̄d−1q2h(q2ηu)∗h(q2ηv)h(q2ηu)∗h(q2ηv),

(6.57)

which is well behaved in the IR limit for d− 1− 2n > 0.
Thus, we have the largest possible IR contribution from the region q1,2 < k where F1 ∝
k2(d−1−3n). Additionally, as long as d − 1 − 3n > 0, F (k, ηu, ηv) is well behaved and will not
give large IR contributions.
Therefore, we can neglect k in comparison with q1,2 in F (k, ηu, ηv) and write

Fn(k, ηu, ηv) ≈ Fκ(k, ηu, ηv) ≈ −8F (k, ηu, ηv), (6.58)

where the numerical factor comes from summing all the numerical coefficients in eq. 6.50. We
want to extract the k dependence of eq. 6.49, and therefore would like to expand the mode
functions for small argument. One can only do this by cutting off the ηu/v integrals at n/k,
which corresponds to neglecting the high comoving momenta with kηu/v � n,∫ η

∞

∫ η

∞
dηu dηv →

∫ η

n/k

∫ η

n/k
dηu dηv. (6.59)
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Otherwise, expanding the mode functions would not be valid at the lower ends of the conformal
time integrals (corresponding to η → ∞). This corresponds to neglecting high momentum
UV behaviour, which we are not interested in here anyway.
Next, we preform the substitution u = k

√
ηuηv and v =

√
ηu/ηv. Our integral measure then

becomes ∫ η

n/k

∫ η

n/k
dηu dηv → −

2

k2

∫ kη

n

∫
du dv

u

v
. (6.60)

Additionally we shift our momenta as q1,2 → q1,2/ηv = q1,2kv/u so that

F (u, v) =
(Hv)2(d−1)

H5(ku)2

∫ ∞
0

∫ ∞
0

d̄d−1q1d̄
d−1q2

h(q1v
2)∗h(q1)h(q2v

2)∗h(q2)h(|q1 + q2| v2)∗h(|q1 + q2|)
(6.61)

As an intermediate summary, we have

iGK(2)(k; ηx, ηy) ≈−
iλ2

12H
(HηxHηy)

d−1
2

×
(
h(kηx)∗h(kηy)n

(2)
k (η) + h(kηx)∗h(kηy)

∗κ
(2)
k (η) + c.c

)
n

(2)
k (η) ≈− 16H2(d−1)

H3k4

∫ kη

n

∫
dudv

v2d−3

u
h(uv)h(u/v)∗W (v)

κ
(2)
k (η) ≈16H2(d−1)

H3k4

∫ kη

n

∫
dudv

v2d−3

u
h(uv)h(u/v)∗W (v)

W (v) =
1

H3

∫ ∞
0

∫ ∞
0

d̄d−1q1d̄
d−1q2

× h(q1v
2)∗h(q1)h(q2v

2)∗h(q2)h(|q1 + q2| v2)∗h(|q1 + q2|)

(6.62)

The small parameters in the above expression are k and u, since u also contains one power
of k. One immediately sees that if we would expand h(kηx,y), h(uv) and h(u/v) to smallest
order as in eq. 6.1, the two terms would cancel. Hence we must go to a higher order of k.
We can expand iGK(2) to lowest non-vanishing order in k and then preform the integral over u.
Neglecting all orders which are finite in the limit k → 0, we get

iGK(2)(k; η) =iλ2 4A3
−Re (A+)H2d−6

3

(Hη)d−1

(kη)2n
log

(
k2η2

n2

)
×
∫
dv v2d−3(−v−2n + v2n) (W (v)−W (v)∗) ,

(6.63)

similar to the result obtained by others [5, 8, 9, 37], etc..
Hence the general form of the IR contributions to the Keldysh propagator up to second order
loop effects is

iGK2 (k; η) = i
(Hη)d−1

(kη)2n

[
A+ λ2B log

(
k2η2

n2

)]
, (6.64)

where α, β are numerical coefficients. Therefore we get an additional, logarithmically diverging
IR contribution to the Keldysh propagator as we take kη → 0. This contribution is still de
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Sitter invariant and hence a function of Z when we go back to position space. This can be
seen by considering the parameter

Z ≈ 1 +
η2 − x2

2η2
(6.65)

In partial Fourier space Z is represented by 1/kη and therefore we see that the expression
in eq. 6.64 is de Sitter invariant. Therefore this cannot be the origin of a sufficiently large
backreaction on the spacetime and a breaking of the exact de Sitter universe.

6.4 De Sitter invariance at loop level

We have found that the second order loop corrections to the Keldysh propagator are exactly
de Sitter invariant. This seems like a strange coincidence at first and one might ask if this
is a general feature? Given the arguments in app. F, as long as we do not break de Sitter
invariance, the contribution to the EMT will always be constant and we will not find growing
IR contributions which inevitably cause backreaction on the spacetime geometry.
One can indeed argue that, if we restrict ourselves to the expanding Pinocaré patch, any loop
correction will be de Sitter invariant, as long as we do not encounter IR divergences. These
arguments are nicely summarised in [8] and we will reproduce them here.
An arbitrary order loop correction to the propagators will be of the form

G(.)(X,Y ) =

∫
DU

∫
DV G0(Zε(X,U))Σ0(Zε(U, V ))G0(Zε(V, Y )), (6.66)

where G is a placeholder for any of the propagators GK/R/A0 , X,Y, U, V are embedding coor-
dinates, and DU,DV are the corresponding integral measures. Σ0(Zε(U, V )) is a combination
of different propagators which determine the loop structure. The integral measures for the
Poincaré patch are (see sec. 2.4)

DU = dDU δ(UAU
A +H−2) Θ(U0 − UD) = ddxU

√
|g| (6.67)

and similarly for DV . Here the δ-function enforces the defining embedding property of de
Sitter space from eq. 2.11 and the Θ-function restricts to the expanding Poincaré patch.
Consider now the small rotation of UD into any other spatial coordinate

UD → UD + σU1, (6.68)

where U1 is arbitrary here. We can expand the integral measure in σ, which gives the first
order variation

δσDU = dDU δ(UAU
A +H−2) δ(U0 − UD)σU1

= d(U0 + UD)dD−2U δ(UAU
A +H−2)σU1.

(6.69)

We already have established that the integrand in the loop corrections only depends on Z,
which can be written as

Z(X,U) = −H2ηABX
AUB

= −H2

[
1

2
(X0 +XD)(U0 − UD) +

1

2
(X0 −XD)(U0 + UD)− δijXiU j

]
.

(6.70)
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Figure 6.4: Left : The two possible integration contours of the d(U0 + UD) integral for a BD
propagator with branch cut from 1→∞ along the real axis. No poles are included in any of
the contours.
Right : The integration contours of the d(U0 + UD) integral for any other α propagator with
an additional branch cut from 1→∞ along the real axis and also a different iε prescription.

The first term in Z, containing (U0 − UD), is zero in the variation of the measure due to the
δ(U0−UD) factor. We are in the expanding Poincaré patch and so (X0−XD) ≥ 0. Therefore
G0(Z(X,U |U0→U0+UD)) has the same analytic structure as G0(Z(X,U)).
Since the δ-distribution enforces U0 − UD = 1/(H2ηu) = 0, ηu is pushed to past infinity,
sgn(x, u) = +1 and the iε-prescription of the propagators is fixed to

G0(X,U) = G0(Z(X,U)− iε), (6.71)

and oppositely for G0(Zε(V, Y )). Furthermore, for the BD two point function the integrand
of d(U0 + UD) is an analytic function in the complex U0 + UD plane with a cut going from
1→∞ along the real axis, but slightly shifted due to the iε-prescription.
Since the propagators fall off quick enough for large

∣∣U0 + UD
∣∣, we can choose to close the

integration contour with a large semi circle either in the upper or lower half U0 +UD plane as
sketched in fig. 6.4. Since G0 is analytic everywhere this integral will be zero by the residue
theorem. Therefore the variation of the integral measure δσDU (and also δσDV by the same
argument) vanishes when integrating the BD propagator.
For any other α-vacua, these arguments break down at the point where we try to close the
integral contour. Here we have an additional branch cut from−1→ −∞, where our propagator
also carries a different iε-prescription. Hence one cannot close the contour in a simple way.
Summarizing, we have found that as long as we consider only the Poincaré patch and BD type
propagators, any loop correction will only be a function of the geodesic distance,

G(.)(X,Y ) = G(.)(Zε(X,Y )), (6.72)

and we will never break de Sitter isometry. This agrees with our findings in the previous
section. In return, this tells us that loop corrections will vanish in the coincidence limit and
we will not get growing contributions to the EMT. On the other hand if one considers other
vacua loop corrections will break the de Sitter isometry. Furthermore, in global de Sitter space
or in the contracting Poincaré patch these arguments also break down, because one encounters
IR divergences [8].
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Backreaction and graceful exit

So far we have learned that we must break de Sitter isometry to break out of the exponentially
expanding phase and obtain a graceful exit. We have seen that this isometry is respected in
the free theory and even in the loop corrections to the propagators. Thus, we can conclude
that we need to break de Sitter isometry some other way. So far we have restricted ourselves
to exact de Sitter space. We have not really allowed for a dynamic backreaction on the space-
time. This is what we want to try and address in this section.

A simple glance at the semi-classical Einstein equation (eq. 4.16)

Rµν −
1

2
gµνR− gµνΛ = 8π〈Tµν〉, (7.1)

shows that by construction we assume that the quantum effects onto the spacetime remain
negligibly small, as de Sitter is a solution for 〈Tµν〉 = 0. The Einstein equation assumes a
fixed background so even if quantum effects would become large, we do not yet have physical
understanding of the effects this would have. To investigate this behaviour, one must add
some degree of freedom to our metric to take account for this backreaction. We will treat this
degree of freedom as a scalar perturbation to the metric. If quantum effects indeed have a
chance of becoming large, this will manifest itself in a breakdown of perturbation theory.
We will parametrize our metric by

gµν =
1

η2
(1 + sf(x)) ηµν , sf(x)� 1, (7.2)

where we have added a scalar degree of freedom, f(x), to the original de Sitter metric of the
expanding Poincaré patch and we have set H = 1 for simplicity. The parameter s will be our
expansion parameter.
As always in general relativity, there is the question of coordinate dependent effects. We have
seen in sec. 6.4 that the form of the loop corrections respects de Sitter invariance, given that
we are working in the expanding Poincaré patch and do not encounter direct singularities. In
other patches of the spacetime this is not so apparent or even not true. The same question
one can ask of the result we obtained for our metric perturbation.
To obtain concrete and unquestionable results for our metric perturbation, one has to construct
gauge invariant variables which remain unchanged under general coordinate transformations
[1]. Due to gauge freedom we can choose the longitudinal gauge such that the chosen metric
perturbation is indeed a gauge invariant variable, given that our EMT is diagonal [1].



72 7. Backreaction and graceful exit

The general approach will be as follows. We will linearise both the equation of motion of the
scalar field and the trace of the Einstein equation. To zeroth order is the expansion we will
reproduce our result from sec. 3 for the two point function. This result we can substitute into
the Einstein equation to solve for f(x). For simplicity we fix d = 4 and we will neglect the
higher derivative terms from sec. 5.1. The Einstein then has the form

G0
αβ + sG1

αβ = Λgαβ + s〈Tµν〉 (7.3)

where the superscripts label the order of s. The zeroth order G0
αβ will be free of the pertur-

bation and f(x) will only appear in G1
αβ . To O(s0) we have

G0
αβ = Λgαβ (7.4)

which just gives the standard de Sitter solution from 2.10 in d = 4,

Λ = 3. (7.5)

The scalar field equation of motion from eq. 3.10 becomes

�Mχ(x) +

[
(1 + sf(x))2

η2

(
9

4
− 12ξ − n2

)
− (1− 6ξ)

(1 + sf(x))

(
s�Mf(x)− s2

η
∂ηf(x) + s

2

η2
f(x) +

2

η2

)]
χ(x) = 0

(7.6)

when written in terms of n =
√

9
4 −

m2

H2 − 12ξ, which is slightly modified here as we have
included the ξR coupling in the Lagrangian. We again see that a conformally coupled scalar
field completely decouples from gravity as 9

4 − 12ξ−n2 = m2 is just the mass term. As usual,
this equation resembles a harmonic oscillator with coordinate dependent frequency and can
be expressed as

�Mχ+ Ω[f(x), η]2 χ = 0, (7.7)

where Ω[f(x), η]2 just symbolically hides all the mess appearing in 7.6. We can now expand
in s to linearise the equation substitute the mode expansion from eq. 3.20. This then leads
to

q′′k(η) +
1

η2

(
k2η2 − n2 +

1

4

)
qk(η) = 0, (7.8)

which is just eq. 3.21 for d = 4 written in terms of n. As we already know, the solutions to
this equation are given by

qk =
√
η
(
A1H

(1)
n (kη) +A2H

(2)
n (kη)

)
, (7.9)

with H(1/2)
n being Hankel functions.

At this point we must choose an appropriate vacuum for our expectation value, as otherwise
we do not stand a chance of finding a solution to f(x). For BD boundary conditions we then
have

χk =

√
πη

2

(
a†kH

(1)
n (kη) + h.c.

)
. (7.10)
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The two point function in partial momentum space becomes

〈χkχk〉 =
πη

2

∣∣∣H(1)
n (kη)

∣∣∣2 . (7.11)

Let us now turn to the Einstein equation. To O(s1) the trace of the linearised Einstein
equation becomes

�Mf(x)− 2

η
∂ηf(x)− 4

η2
f(x)

+
4πη

3
(1− 6ξ)

[
ηµν〈∂µχ(x)∂νχ(x)〉+

2

η
〈χ(x)∂ηχ(x)〉

]
+

2π

3

(
39ξ + 4(1− 3ξ)n2 − 7

)
〈χ(x)χ(x)〉 = 0.

(7.12)

We can now write this expression purely in terms of the two point function and derivatives
thereof. To this end we can use the property

ηµν〈∂µχ(x)∂νχ(x)〉 =
1

2
�M 〈χ(x)χ(x)〉 − 〈χ(x)�Mχ(x)〉

=
1

2
�M 〈χ(x)χ(x)〉+ Ω0(η)2〈χ(x)χ(x)〉,

(7.13)

having made use of eq. 7.6. To zeroth order in the expansion

Ω0(η)2 =
1

η2

(
k2η2 − n2 +

1

4

)
(7.14)

is independent of f(x). We can also transform our metric perturbation and two point function
to partial Fourier space

f(x) =

∫
d̄d−1kfk(η)e−ik.x and 〈χ(x)χ(x)〉 =

∫
d̄d−1k〈χk(η)χk(η)〉e−ik.x. (7.15)

Then the Fourier transformed trace Einstein equation becomes

f ′′k (η)− 2

η
f ′k(η) +

1

η2

(
k2η2 − 4

)
fk(η)

− 2πη2

3
(1− 6ξ)

(
〈χk(η)χk(η)〉′′ − 2

η
〈χk(η)χk(η)〉′

)
+
π

3

(
4n2 + 72ξ − 13− 2k2η2(1− 6ξ)

)
〈χk(η)χk(η)〉 = 0.

(7.16)

which gives us a coupled equation for fk and 〈χkχk〉.
Unfortunately it is very hard to find a general solution to 7.16 for fk, considering the general
form of the BD two point function. Therefore we will take limiting values of the above
equation and solve in the IR (kη � 1) and UV (kη � 1), where the BD two point function in
the coincidence limit takes the form

〈χkχk〉 ≈

{
1
k +O

(
η(kη)−3

)
kη � 1

22nΓ(n)2

2π
η

(kη)2n
+O

(
η(kη)0

)
kη � 1

, (7.17)
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to lowest order in kη. This again reflects the fact that that the IR regime gives larger contri-
butions than the UV. We have seen this (kη)−2n behaviour before, namely in the IR limit of
the BD two point function, eq. 6.5.
Let us start with the UV limit. Upon substituting the UV expansion from eq. 7.17 into eq.
7.16 the equation becomes

f ′′k (η)− 2

η
f ′k(η) +

1

η2

(
k2η2 − 4

)
fk(η) +

π

3k

(
4n2 + 72ξ − 13− 2k2η2(1− 6ξ)

)
= 0. (7.18)

Since (kη)2 � 1 we can simplify the equation to

f ′′k (η)− 2

η
f ′k(η) + k2fk(η)− 2π

3
(1− 6ξ)kη2 = 0, (7.19)

and find the solution

fUVk (η) =
C1η

3/2

(kη)3/2
(kη cos(kη)− sin(kη)) +

C2η
3/2

(kη)3/2
(kη sin(kη) + cos(kη))

+
2πη3

3(kη)3

(
k2η2 + 2

)
(1− 6ξ),

(7.20)

where C1/2 are complex coefficients. The first two terms of this solution are oscillatory as one
would expect in the UV limit. This oscillatory part exactly matches the behaviour of quantised
gravitational wave modes and hence describes propagating scalar degrees of freedom [1]. The
last term vanishes in the limit of conformal coupling. For fixed (comoving) wavelength modes
this solution is fully decaying as time progresses. The dominant contribution will be given by
the oscillating terms behaving as

fUVk ∼ C1η
3/2

√
kη

cos(kη) +
C2η

3/2

√
kη

sin(kη). (7.21)

Hence, we see that here we do not violate out perturbative assumption sf(x) � 1. If our
perturbations are small initially, they will always remain small. Furthermore, there is no
simple way to make this solution vanish in the infinite past to get exact de Sitter geometry.
In the IR limit we substitute the IR expansion from eq. 7.17 into eq. 7.16, giving

f ′′k (η) +
2

η
f ′k(η) +

1

η2

(
k2η2 − 4

)
fk(η)

− 22n+1Γ(n)2η

3(kη)2n

(
k2η2

2
(1− 6ξ)− 12ξ + (1− 12ξ)n2 + (1− 6ξ)n+

9

4

)
= 0.

(7.22)

Moreover, since k2η2 � 1 we can further simplify the equation to

f ′′k (η) +
2

η
f ′k(η)− 4

η2
fk(η)

− 22n+1Γ(n)2η

3(kη)2n

(
−12ξ + (1− 12ξ)n2 + (1− 6ξ)n+

9

4

)
= 0.

(7.23)

This then leads to the solution

f IRk (η) =−
22nΓ(n)2

(
−12ξ + (1− 12ξ)n2 + (1− 6ξ)n+ 9

4

)
3(2− n)(2n+ 1)

η3

(kη)2n
+
D1

η
+D2η

4. (7.24)
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where D1/2 are complex coefficients. By matching our solution to pure de Sitter in the infinite
past we can fix the constant D2 = 0. To satisfy this boundary condition we must require

fk(η →∞) = 0. (7.25)

This choice is best justified from cosmological standpoint, as described in sec. 5.1. First we
want to have a stage of inflation and then a mechanism to exit this stage, a graceful exit.
Since we are in the IR limit but want to take η →∞ we must compensate by taking very low
momentum modes k � 1/η.
As we take the comoving momentum kη → 0, while fixing η to be finite, we run into a singular-
ity. But as n ≤ 3/2, the most dominant term is the one proportional to 1/η, which diverges in
the asymptotic future, taking η → 0. This term violates de Sitter invariance explicitly and will
sooner or later also violate the perturbative assumption that sf(x)� 1. When sf(x) ∼ O (1)
the perturbation will become dominant and perturbation theory breaks down. Therefore, in
this regime large backreaction could occur. Although this is not a direct conclusion of this
calculation, since when perturbation theory breaks down the higher order terms contribute
significantly and can change the behaviour of our solution in an unpredictable way.
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Chapter 8

Conclusions

The most interesting feature of quantising a quantum field with respect to a dynamical back-
ground falls back on the lack of a global timelike Killing vector. This prevents us from diago-
nalising the Hamiltonian at all times and therefore finding a unique Fock space. We restricted
the class of possible vacua by requiring de Sitter invariance, leading first to the well known
two parameter class of Mottola-Allen or (α, β)-vacua, invariant under the time preserving part
of the de Sitter group. Additionally, we found the one parameter class of α-vacua, where the
anticommutator and Feynman Green functions are fully de Sitter invariant. Furthermore, by
UV matching onto the Minkowski theory, one fixes the last parameter α and obtains the BD
or euclidean vacuum.
There were attempts to set further restrictions or to even exclude some of the (α, β)-vacua
[16, 18]. To my awareness, there are no significantly convincing arguments, other than the
ones given here, to exclude any of the (α, β)-vacua on physical or mathematical grounds [17].
Therefore, these alternatives can not be ruled out and must be taken seriously.
This freedom is also sensible from a physical point of view. On a given time-slice Σ1 the
de Sitter metric is static, we can diagonalise our Hamiltonian, build a Fock space and do all
the beautiful calculations we are used to. On a different time-slice Σ2 a new Fock space will
correspond to the true vacuum. Therefore, our results from Σ1 will differ from the ones on
Σ2. By allowing for a free parameter α we can transform between two such time-slices. For
example, we have seen that for the BD results αBD = 0. Hence, for any general time-slice Σi

we have some αi, for which the Hamiltonian is diagonalised.
One interesting aspect for further discussion would be to separate the α-vacua in classes con-
necting the quantisation on different time-slices. Depending on the initial vacuum choice, a
different class of parameters should relate the subsequent vacua to each other. If we want to
include the BD vacuum, it might be possible to exclude some α parameters.
With the vacuum ambiguity in mind, we began to investigate if quantum effects can in prin-
ciple significantly backreact and break the de Sitter geometry. The physical motivation came
from the idea to provide a new mechanism for a graceful exit due to quantum effects.
What we have found is that as long as we do not break de Sitter isometry the UV regularised
contribution to the BD quantum expectation value of the EMT is just a finite constant (see
eq. 4.71). Any other α-vacuum choice only gives an additional shift to the mentioned con-
stant value. Depending on the potential or in our case the effective mass of the free field, this
contribution can either enhance or suppress the effect of the cosmological constant. The scale
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factor will still grow exponentially, since we have not broken de Sitter invariance

a(t) ∝ e
√

1
3

(Λ+8π〈T 00〉) t
. (8.1)

Depending on the sign and magnitude of 〈T 00〉 we screen the cosmological constant and
in return influence the speed of expansion of the universe accordingly. When the quantum
contribution to the energy density becomes so negative that it dominates over the cosmological
constant we obtain an oscillating behaviour of our scale factor and enter the class of cyclic
universes.
On the other hand, this contribution is constant and might as well be absorbed into the
cosmological constant. Thus, as long as de Sitter isometry is respected any contribution to
the EMT is constant and de Sitter geometry will not be disturbed. These contributions must
not even be negligibly small, as long as it remains smaller than the cosmological constant. In
return, we used this as a motivation to find mechanisms which break de Sitter isometry and
then obtain contributions to the EMT, which might cause significant backreaction.
By investigating λφ4 interactions and loop corrections to the Keldysh propagator in eq. 6.64,
one finds that de Sitter isometry is still respected. Furthermore, we discovered that as long as
we restrict to the expanding Poincaré patch de Sitter isometry will generally be respected for
loop corrections to the BD propagator. For any other vacuum choice, the arguments presented
in sec. 6.4 break down and de Sitter invariance can be broken, which is also an interesting
point for further discussion. Additionally, also in different coordinate patches of the spacetime,
de Sitter invariance is broken at loop level. There are ongoing investigations in this direction
and the general idea of breaking out of de Sitter spacetime [6, 7, 9, 37, 41–45].
So far we have restricted to exact de Sitter geometry and have not allowed for dynamic
backreaction on the spacetime. By allowing for a scalar metric perturbation we broke de Sitter
isometry explicitly. Our results give decaying and oscillatory behaviour of the perturbation
on short scales in eq. 7.20. One interesting aspect here is the similarity with the gravitational
wave modes [1]. On large scales, we find in eq. 7.24 that one part of the solution actually
grows, indicating the breakdown of perturbation theory at some point in time. Therefore,
our results have to be interpreted with caution. One point that we can nonetheless make is,
since in the UV regime the amplitude of the metric perturbation is decaying, to get significant
contributions on large scales, the initial amplitude of the perturbation must be large enough
to survive this decaying regime. However, if the initial perturbations have to be large, to
survive over time and finally grow when stretched to the IR, we also violate our perturbative
assumption in the UV limit.
The question of a de Sitter breaking has become a fundamental question of cosmology over
the past century. Historically, the first mechanism to do so was discovered by Starobinsky
[29]. It is particularly beautiful when discussed in the realms of slow roll inflation and an
inflaton field, giving rise to a non-eternal de Sitter solution through a simple scalar degree
of freedom. Nonetheless, other mechanisms of de Sitter breaking are also interesting and
important. Despite inflation being a widely accepted paradigm, it comes with its own set of
unsolved problems. Alternative theories which tell us a completely different story about the
history of our universe might grow in popularity in the future. As the de Sitter stage acts as
a very efficient classical smoothing mechanism [1], it describes a probably inevitable stage of
our universe in any acceptable paradigm. Therefore, the research presented in part here might
become very valuable in understanding mechanisms of transition between different stages of
the universe we live in.



Appendix A

Conventions

For a general metric gαβ , the inverse is defined via gαβgβγ = δγα. Throughout this text, the
signature (+ − . . .−) will be used, where . . . reflects that mostly we will keep things general
and work in d dimensions.
The conventional Einstein equation is given by

Gαβ − Λgαβ = Rαβ −
1

2
gαβR− Λgαβ = 8πTαβ, (A.1)

whereRαβ is the Ricci tensor, R the Ricci scalar or scalar curvature, Tαβ the energy momentum
tensor (EMT) and Λ the cosmological constant. The Ricci tensor is given by the contraction
of the Riemann tensor, and can be expressed as

Rαβ = Γγαβ,γ − Γγγα,β + ΓγγρΓ
ρ
αβ − ΓγαρΓ

ρ
γβ, (A.2)

where ( . ),α≡ ∂( . )
∂xα . The Christoffel symbols Γαβγ can be written in terms of the metric as

Γαβγ =
1

2
gαρ (gαρ,β + gβρ,α − gαβ,ρ) . (A.3)

We generally assume torsion freeness, so that Γαβγ = Γαγβ . The Ricci scalar is the contraction
of the Ricci tensor

R = gαβRαβ. (A.4)

The EMT obeys the conservation law,

∇αTαβ = Tαβ,α +ΓααγT
γβ + ΓβαγT

αγ = 0, (A.5)

where ∇α represents the covariant derivative which in this convention has the property
∇αgαβ = 0. This conservation law, together with eq. A.1 implies that also the Einstein
tensor is conserved, ∇αGαβ = 0.
Often it will be useful to simplify the notation for 2π-normalised integrals, which we will
denote by ∫

ddk

(2π)d/2
≡
∫
d̄dk. (A.6)

Additionally, we will usually work in Planck units, setting ~ = c = G = 1.
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Appendix B

Squeezed states

We have claimed that the unitary transformation

a
(α,β)
k = B(α,β) akB

(α,β),† with

B(α,β) := exp

(
1

2

∫
dd−1k α

(
eiβa†2k − e

−iβa2
k

))
,

(B.1)

is equivalent to the transformation

a
(α,β)
k = coshαak − sinhα eiβ a†k. (B.2)

Here we want to give the proof of this statement based on [16, 17]. Let us define

A :=
1

2

∫
dd−1k α

(
eiβa†2k − e

−iβa2
k

)
, (B.3)

so that we can write
B(α,β) akB

(α,β),† = eAake
−A = eCAak (B.4)

where CAak := [CA, ak]. One can easily compute

[A, ak] = −αeiβa†k and
[
A, a†k

]
= −αe−iβak. (B.5)

From which we find

C2n
A ak = α2nak and C2n+1

A ak = −α2n+1eiβa†k. (B.6)

Then we obtain from eq. B.4 that

a
(α,β)
k = ak

∑
n

α2n

2n!
− a†k

∑
n

eiβ
α2n+1

(2n+ 1)!

= coshαak − sinhα eiβ a†k,

(B.7)

which completes the proof.
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Appendix C

A review of Green functions in flat
space

The action of a free, massive scalar field in d-dimensional Minkowski spacetime is given by

S[φ] =
1

2

∫
ddx

(
ηµν∂µφ(x)∂νφ(x)−m2φ(x)2

)
. (C.1)

This action gives rise to the equation of motion[
�x +m2

]
φ(x) = 0, (C.2)

where the subscript means that the operator is acting on the coordinate functions x. Then
we can write the Green function equation as[

�x +m2
]
G(x, y) = δd(x− y). (C.3)

In momentum space we can find the general integral representation of the Green function

G(x, y) = −
∫

ddk

(2π)d
e−ik.(x−y)

k2 −m2
, (C.4)

where k.x := ηµνk
µxν and ηµν is the Minkowski metric. Note that the Fourier transformation

is only possible since the Minkowski metric is independent of any coordinate function. We
can perform the k0 integral in the complex plane, deforming the contour around the poles at
k0 = ±

√
k2 +m2. The pole structure of the propagators is important as the physical mass of

a particle is determined by the position of the pole k2 = m2
ph (where the subscript indicates

that m 6= mph necessarily, due to loop corrections) [46, 47].
The choice of contour is ambiguous, giving rise to a variety of Green functions. This choice
also reflects the boundary condition imposed on the solution. The possible choices are divided
into two classes. The first class provides a solution to the inhomogeneous equation in eq. C.3
[15, 26]:

1. Retarded Green function: We choose the contour to run above the poles, as in fig. C.1.
For x0−y0 = tx− ty < 0 one closes the contour in the upper half plane (UHP), resulting
in G(x, y) = 0. On the other hand when tx − ty > 0 one closes in the lower half plane
(LHP). Now both poles are enclosed within the contour leading to a non-zero result,
namely the retarded Green function GR(x, y). Hence, for fixed y, GR(x, y) has support
for x in the future light cone of y.
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× × Re
(
k0
)

Im
(
k0
)

GR

Figure C.1: The contour of the retarded Green function GR.

× × Re
(
k0
)

Im
(
k0
)

GA

Figure C.2: The contour of the advanced Green function GA.

2. Advanced Green function: This is the complement of the retarded Green function. Here
the contour is chosen to run below the poles, as in fig. C.2. Here, only when tx− ty < 0
both poles are enclosed, giving the advanced Green function GA(x, y). For fixed y,
GA(x, y) has support for x in the past light cone of y.

3. Averaged Green function: The average of the retarded and advanced Green functions is
denoted

Ḡ(x, y) =
1

2
[GR(x, y) +GA(x, y)] , (C.5)

and is given by the contour in fig. C.3. Due to the support properties of the retarded
and advanced Green functions, the support of Ḡ(x, y) is given for x in the full light cone
of y.

4. Feynman Green function: The Feynman Green functionGF (x, y) is obtained by choosing
the contour displayed in fig. C.4, namely going under the left pole but above the right
one.

The second type of contour choice is given by differences of the above Green functions,
which consequently provide solutions to the homogeneous equation[

�x +m2
]
G(x, y) = 0. (C.6)

Due to the linearity of the differential operator, the δ-functions on the right hand side simply
cancel. In this class we have [15, 26]:

× × Re
(
k0
)

Im
(
k0
)

2Ḡ

Figure C.3: The contour of the averaged Green function Ḡ.



85

× × Re
(
k0
)

Im
(
k0
)

GF

Figure C.4: The contour of the retarded Green function GR.

× × Re
(
k0
)

Im
(
k0
)

−iG− +iG+

Figure C.5: The contour of the Wightman function G+ and its conjugate G−.

5. Wightman function and conjugate: The Wightman function, G+(x, y), is obtained by
circling the right pole, which contributes +iG+(x, y). It is the difference of advanced and
Feynman Green function (actually the sum in this case, but note the different contour
directions),

+iG+(x, y) = −GA(x, y)−GF (x, y). (C.7)

The left pole contributes −iG−(x, y), where G−(x, y) = G+(x, y)∗ and

−iG−(x, y) = −GR(x, y) +GF (x, y). (C.8)

The contours are shown in fig C.5.

6. Commutator Green function: The commutator Green function, G(x, y), is obtained by
circling both poles, as in fig. C.6. It is given by the difference

G(x, y) = GA(x, y)−GR(x, y)

= −i [G+(x, y)−G−(x, y)]

= 2Im (G+(x, y))

(C.9)

7. Anticommutator Green function: The anticommutator Green function G+(x, y) is ob-

× × Re
(
k0
)

Im
(
k0
)

G

Figure C.6: The contour of the commutator Green function G.
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× × Re
(
k0
)

Im
(
k0
)

iG+

Figure C.7: The contour of the anticommutator Green function G+.

tained via the contour displayed in fig C.7. It is given by

iG(x, y) = G+(x, y) +G−(x, y)

= 2Re (G+(x, y))

= 2i
[
Ḡ(x, y) +GF (x, y)

] (C.10)

The above Green functions have another interpretation. They have a direct connection to
the two point functions (see eg. [23]),

G+(x, y) = 〈vac |φ(x)φ(y) | vac〉
G−(x, y) = 〈vac |φ(y)φ(x) | vac〉 ,

(C.11)

for some vacuum
∣∣ vac〉. Hence, the commutator and anticommutator Green functions can be

written as

iG(x, y) = 〈vac | [φ(x), φ(y)] | vac〉
G(1)(x, y) = 〈vac | {φ(x), φ(y)} | vac〉

(C.12)

For the Feynman Green function,

GF (x, y) = −Ḡ(x, y)− 1

2
iG(1)(x, y). (C.13)

We can therefore write it as

iGF (x, y) = θ(tx − ty)G+(x, y) + θ(ty − tx)G−(x, y)

= 〈vac | T {φ(x)φ(y)} | vac〉 ,
(C.14)

where T {.} represents the time ordered product.



Appendix D

The two point function by direct
calculation

In this section we will present the direct calculation of obtaining an analytic expression for
the two point function in the BD vacuum, given by the mode expansion, in eq. 3.39.
We start by substituting the mode expansion 3.39 into the expression for the two-point func-
tion,

G+(x, y) = 〈0 |φ(x)φ(y) | 0〉

=
π

4H
(H2ηxηy)

d−1
2

∫
dd−1k

(2π)d−1
H(1)
n (kηx)∗H(1)

n (kηy)e
−ik.(x−y).

(D.1)

It is practical to now go to spherical coordinates, using dd−1k = kd−2 sind−3 θ dk dθ dΩd−3 and
orienting our coordinate system such that k.(x − y) = kr cos θ, where r = |x− y|. We can
then write the angular integral in terms of a Bessel function,∫ π

0
dθ sind−3 θ e−ikrcosθ =

∫ 1

−1
ds(1− s2)

d−4
2 e−ikrx

=
√
πΓ

(
d− 2

2

)(
2

kr

) d−3
2

J d−3
2

(kr).

(D.2)

Substituting this back into our original expression gives,

GBD+ (x, y) =
π

4H
(H2ηxηy)

d−1
2

√
π

(2π)d−1
Ωd−3Γ

(
d− 2

2

)(
2

r

) d−3
2

×
∫ ∞

0
dkH(2)

n (kηx)H(1)
n (kηy)J d−3

2
(kr)k

d−1
2 ,

(D.3)

where Ωd+1 = 2π
d
2

Γ( d2 )
. This integral can be solved analytically as follows [48],∫ ∞

0
dkH(2)

n (kηx)H(1)
n (kηy)J d−3

2
(kr)k

d−1
2

=
4

π2

∫ ∞
0

dkKn(ikηx(1− iε sgn(x, y)))Kn(−ikηy(1− iε sgn(x, y)))J d−3
2

(kr)k
d−1
2

=
4
√
π

23/2π2

Γ
(
d−1

2 + n
)

Γ
(
d−1

2 − n
)

(ηxηy)
d−1
2 (Z2

ε − 1)
d−2
4

r
d−3
2 P

− d−2
2

n− 1
2

(−Zε),

(D.4)
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where Pml (x) is the associated Legendre function of the first kind and

sgn(x, y) := Θ(ηx − ηy)−Θ(ηy − ηx). (D.5)

It is required to add a small imaginary part −iε sgn(x, y) to ηx and ηy such that

Re (iηx(1− iε sgn(x, y)) + (−i)ηy(1− iε sgn(x, y))) =

= (ηx − ηy)ε sgn(x, y) > |Im (r)| = 0,
(D.6)

which is a requirement for the solution in D.4 and defines the iε-prescription here at the same
time [7, 48]. Hence, in Poincaré coordinates and including the iε prescription

Zε(x, y) := 1 +
(ηx − ηy)2 − r2

2ηxηy
− iε sgn(x, y). (D.7)

Putting everything together, we find the BD two point function

G+(Zε) =
Hd−2

2(2π)d/2
Γ
(
d−1

2 + n
)

Γ
(
d−1

2 − n
)

(Z2
ε − 1)

d−2
4

P
− d−2

2

n− 1
2

(−Zε). (D.8)

We can write this result in terms of the hypergeometric function using [39, Eq. 14.3.15]

P
− d−2

2

n− 1
2

(−Zε) =
2−

d
2

+1(Z2
ε − 1)

d−2
4

Γ
(
d
2

) 2F1

(
d− 1

2
− n, d− 1

2
+ n;

d

2
;
1 + Zε

2

)
. (D.9)

Therefore, our final expression for the BD two point function is

G+(Zε) =
Hd−2

(4π)d/2
Γ (N−) Γ (N−)

Γ
(
d
2

) 2F1

(
N−, N+;

d

2
;
1 + Zε

2

)
, (D.10)

where N± := d−1
2 ± n. This is shown in fig. 3.1 in d = 4 for different values of m2/H2.
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Time ordering in the path integral

Here, we want to show that time ordering appears naturally in the path integral formalism.
This can be seen by considering the two point correlation function∫ φ(xf )

φ(xi)
Dφ φ(x1)φ(x2)eiS[φ] =

=

∫
dφ(xm)

∫ φ(xf )

φ(xm)
Dφ eiSf [φ]

∫ φ(xm)

φ(xi)
Dφ eiSi[φ]φ(x1)φ(x2),

(E.1)

where we have split the path integral at a certain point in time such that ti < t1 < tm < t2 <
tf , but one could equally well interchange the ordering of t1 and t2. The main point is that tm
lies between t1 and t2. When splitting the path integral, one must integrate separately over
the intermediate configuration φ(xm). Also when have split the integration of the action so
that

Si =

∫ xm

xi

ddxL and Sf =

∫ xf

xm

ddxL, (E.2)

where L is the Lagrangian of the theory. Now since in our example tm < t2 we can rearrange
the above integral as∫ φ(xf )

φ(xi)
Dφ φ(x1)φ(x2)eiS[φ] =

=

∫
dφ(xm)

(∫ φ(xf )

φ(xm)
Dφ eiSf [φ]φ(x2)

)(∫ φ(xm)

φ(xi)
Dφ eiSi[φ]φ(x1)

)
,

(E.3)

where we were free to move the field operator φ(x2) through the first integral, as the expressions
in the brackets correspond to complex numbers only. putting everything back together, one
obtains ∫ φ(xf )

φ(xi)
Dφ φ(x1)φ(x2)eiS[φ]∫ φ(xf )

φ(xi)
Dφ eiS[φ]

=
〈out |φ(x2)φ(x1) | in〉〈

out | in
〉 , (E.4)

where the denominator on the left hand side in necessary for correct normalisation. If we
would have taken the ordering ti < t2 < tm < t1 < tf , we would obtain the same expression
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with φ(x1) and φ(x2) exchanged. Hence, in general

〈out | T {φ(x1)φ(x2)} | in〉〈
out | in

〉 =

∫ φ(xf )

φ(xi)
Dφ φ(x1)φ(x2)eiS[φ]∫ φ(xf )

φ(xi)
Dφ eiS[φ]

=
1√
|g(x1)|

δ

δiJ(x1)

1√
|g(x2)|

δ

δiJ(x2)
lnZ[J, gµν ]

∣∣∣∣
J=0

,

(E.5)

we obtain a natural time ordering. Of course one can easily generalise this to any number of
fields.
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Tensors respecting de Sitter isometry

Following Weinberg [10] we can show that if we demand to fully respect de Sitter isometry,
any rank-two tensor is proportional to the metric tensor.
A tensor Aµν...(x) is said to be maximally form invariant if the Lie derivative with respect to
any of the Killing vectors of the spacetime ξµ(x) vanishes

0 = LξAµν...(x) = Aµν...,ρ(x)ξρ(x) +Aρν...(x)ξρ,µ(x) +Aµρ...(x)ξρ,ν(x) + . . . , (F.1)

where ,µ := ∂
∂xµ . That is, under an infinitesimal coordinate transformation

xµ → yµ = xµ − εξµ(x) (F.2)

the considered tensor remains invariant

A
′
µν...(x)−Aµν...(x) = LεξAµν...(x) = 0. (F.3)

We now choose a Killing vector which at a given point X satisfies

ξµ(X) = 0 and ξρ,σ = gρλ(X)ξλ,σ(X) (F.4)

forms an antisymmetric tensor. Then the above condition reads

0 = LεξAµν...(x) = ξλ,σ(X)
(
δσµA

λ
ν...(X) + δσνA

λ
µ ...(X) + . . .

)
(F.5)

where the terms in the bracket must be symmetric in σ ↔ λ as ξλ,σ is antisymmetric per
definition. Since X is arbitrary, one can form this argument at any point and hence it is valid
everywhere.
For a rank-two tensor the above condition simplifies to

δσµB
λ
ν + δσνB

λ
µ = δλµB

σ
ν + δλνB

σ
µ . (F.6)

Contracting σ with µ and lowering λ gives

(d− 1)Bλν +Bνλ = gλνB
µ

µ . (F.7)

Now subtracting the same expression with exchanged indices

(d− 2) (Bλν −Bνλ) = 0. (F.8)
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Hence for d 6= 2, Bλν is symmetric and hence from eq. F.7

Bλν = gλν
B µ
µ

d
=: gλνC. (F.9)

The last check one has to preform is, to show that C is coordinate independent. To achieve
this, we demand that the Lie derivative condition holds for our obtained result

0 = Lεξ(gλνC) = gλνLεξC = gλνεξ
µC,µ, (F.10)

since the Lie derivative of the metric tensor is zero. Since we are free to choose the value of
our Killing vector at any point in a maximally symmetric space,

C,µ = 0, (F.11)

and we have shown coordinate independence of C. Therefore, in maximally symmetric spaces
the only rank-two tensor which respects the full isometry of the space is the metric tensor
times a coordinate independent quantity.
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